https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Peramalan Curah Hujan di Kota Makassar dengan Menggunakan Metode SARIMAX

Authors

  • Nur Hazimah Latief Universitas Tadulako, Palu, Sulawesi Tengah
  • Nur’eni
  • Iman Setiawan

DOI:

https://doi.org/10.29313/statistika.v22i1.990

Keywords:

Peramalan, Curah Hujan, Suhu Udara, SARIMAX

Abstract

ABSTRAK

Peramalan adalah memprediksi kejadian yang akan datang dengan melihat data dari masa lalu. Salah satu metode peramalan yaitu ARIMA yang dibedakan menjadi 2 yaitu ARIMA non-musiman dan ARIMA musiman. Penelitian ini menggunakan metode ARIMA musiman yang dikembangkan untuk mengatasi keterbatasan pada metode tersebut yang dikenal dengan SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogeneous Input) dengan menganalisis curah hujan di Kota Makassar dengan variabel eksogen yaitu suhu udara. Hasil yang dipakai dari penelitian ini adalah mendapatkan model SARIMAX yaitu SARIMAX (2,0,2)(1,0,0)12 dengan persamaan Zt = 0,5552Zt-12 - 0,2097Zt-1 + (0,2097)(0,5552)Zt-13 + 0,6135Zt-2 - (0,6135)(0,5552)Zt-14 + et - 0,614et-2 – 0,3859et-2 – 194,883X1t dengan hasil peramalan curah hujan di Kota Makassar Januari sampai Desember 2021 yaitu 868 mm3, 985 mm3, 848 mm3, 848 mm3, 731 mm3, 829 mm3, 868 mm3, 829 mm3, 712 mm3, 614 mm3, 790 mm3 dan 926 mm3 dimana terjadi kenaikan curah hujan tahun sebelumnya dengan curah hujan terendah terjadi pada bulan Oktober 2021 sebesar 614 mm3 dan terbanyak terjadi pada bulan Februari 2021 sebesar 985 mm3 dengan nilai MAPE sebesar 17,75%.

ABSTRACT

Forecasting is predicting data events from the future by looking at data from the past. One of the forecasting methods is ARIMA which is divided into 2, namely non-seasonal ARIMA and seasonal ARIMA. This study uses the seasonal ARIMA method which was developed to overcome the limitations of the method known as SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogeneous Input) by analyzing rainfall in Makassar City with an exogenous variable, namely air temperature. The purpose of this study is to obtain the results of forecasting rainfall in 2021. The results obtained are the SARIMAX model (2.0,2)(1,0,0)12 with the lowest rainfall forecasting results in Makassar City occurring in October 2021 at 614 mm3 and the most occurred in February 2021 at
985 mm3 with a MAPE value of 17.75%.

References

Ali, S. M. (2013). Time Series Analysis of Baghdad Rainfall Using ARIMA Method. Iraqi Journal of Science, 54(4) : 1136-1142.

Aswi, & Sukarna. (2006). Analisis Deret Waktu. Makassar: Andira.

Chang, P. C., Wang, Y. W., & Liu, C. H. (2007). The Development of a Weighted Evolving Fuzzy Neural Network for PCB Sales Forecasting. Expert Systems with Applications. Volume 32, pp.88-89.

Cryer, J. D., & Chan, K. S. (2008). Time Series Analysis with Application in R (Second ed). New York: Springer.

Fadholi, A. (2013). Uji Perubahan Rata-Rata Suhu Udara dan Curah Hujan di Kota Pangkalpinang . Jurnal Matematika, Sains dan Teknologi, 14(1) : 11-25.

Hidayati, P. (2011). Pengaruh setting temperatur terhadap kinerja ac Split. Jurna Teknik Konversi Energi.

Kartasapoetra, A. G. (2004). Klimatologi Pengaruh Iklim terhadap Tanah dan Tanaman. Jakarta: PT. Bumi Aksara.

Makridakis. (1996). Forecasting Methods and Applications . United States of America: John Wiley & Sons Inc.

Suhartono. (2011). Time Series Forecasting by usind Seasonal Autoregressive Integrated Moving Average: Subset, Multiplicative or Additive Model. Journal of Mathematics and Statistics, 7(1) : 20-27.

Supardi. (2013). Aplikasi Statistika Dalam Penelitian. Jakarta: Adikita.

Downloads

Published

2022-10-30

Issue

Section

Articles