https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Penggerombolan Desa di Kabupaten Poso Berdasarkan Sarana Prasarana dan Tenaga Kesehatan Menggunakan Metode K-Prototype dengan Algoritma Genetika

Authors

  • Septyani Kawuwung septyanikawuwung
  • Nur'eni Universitas Tadulako
  • Lilies Handayani Universitas Tadulako

DOI:

https://doi.org/10.29313/statistika.v22i1.469

Keywords:

Analisis Gerombol, K-prototype, Algoritma Genetika, Infrastruktur, Tenaga Kesehatan

Abstract

ABSTRAK

Analisis gerombol merupakan salah satu teknik untuk mengelompokkan sekumpulan objek yang mirip dengan properti yang sama menjadi satu kelompok sehingga tidak mirip dengan objek di kelompok lainnya. Analisis gerombol umumnya diterapkan pada objek dengan tipe data numerik. Namun pada kenyataannya clustering juga menggunakan tipe data kategorikal. Penanganan clustering dengan data tipe campuran dapat dilakukan dengan menerapkan algoritma k-prototype, namun penentuan inisialisasi pusat cluster cenderung sensitif. Untuk menangani penentuan inisialisasi pusat cluster, dapat diterapkan suatu algoritma yaitu algoritma genetika. Penelitian ini membahas tentang sarana dan prasarana serta tenaga kesehatan di Kabupaten Poso dimana sarana prasarana dan tenaga hukum di kabupaten tersebut sudah memadai namun distribusinya tidak merata di beberapa daerah. Hasil penelitian ini menunjukkan bahwa pada algoritma k-prototype terdapat 8 cluster dengan pusat cluster yang dioptimasi menggunakan algoritma genetika yaitu 36, 7, 99, 49, 69, 104, 105, 110.

ABSTRACT

Cluster analysis is a technique for grouping a set of similar objects into one group so that they are not similar to objects in other groups. Cluster analysis is generally applied to objects with numeric data type. But in reality clustering also uses categorical data types. Clustering handling with mixed-type data can be done by applying the k-prototype algorithm, but the determination of cluster center initialization tends to be sensitive. To handle the determination of the initialization of the cluster center, can be applied an algorithm that is genetic algorithm. This study discusses the facilities and infrastructure and health workers in Poso Regency where the infrastructure and legal personnel in the district are adequate but the distribution is not evenly distributed in several areas. The results of this study indicate that in the k-prototype algorithm there are 8 clusters with cluster centers optimized using the genetic algorithm, namely 36, 7, 99, 49, 69, 104, 105, 110.

References

Ahmad, A dan Lipika, D. (2007). A K-Mean Clustering Algorithm For Mixed Numeric And Categorical Data, Data & Knowledge Engineering, vol. 63, PP. 503-527.

[BPS] Badan Pusat Statistik. (2019). Statistik Daerah Kabupaten Poso 2019. Kabupaten Poso: BPS.

Desiani, A dan Arhami, M. (2006). Konsep Kecerdasan Buatan. Yogyakarta: Andi Offset.

[Dinkes] Dinas Kesehatan. (2018). Profil Kesehatan Provinsi Sulawesi Tengah Tahun 2018. Palu. Dinkes Sulteng.

Han, J dan Kamber. (2006). Data Mining Concepts and Techniques, 2nd ed. San Fransisco, United States of America: Dianne Cerra.

Huang, Z. (1997). Clustering Large Data Sets with Mixed Numeric and Categorical Values. 1997.

Huang, Z. (1998). Extensions To The K-Means Algorithm for Clustering Large Data Sets with Categorical Values, Data Mining and Knowledge Discovery 2, 283–304.

Madhultha, T.S. (2012). An Overview On Clustering Methods. IOSR Journal Of Engineering, II(4), PP.719-725.

Nooraeni, R. (2016). Kombinasi Algoritma Cluster K-Prototype dan Algoritma Genetika untuk data Bertipe Campuran. Jakarta: Sekolah Tinggi Ilmu Statistik.

Suwirmayanti, P. (2014). Optimasi Pusat Cluster K-Prototype dengan Algoritma Genetika. Denpasar: Universitas Udayana.

Utami, P.Y. Suherly, C dan Ilhamsyah. (2014). Aplikasi Pencarian Rute Terpendek Menggunakan Algoritma Genetika. Jurnal Coding Sistem Komputer Universitas Tanjungpura.

Downloads

Published

2022-11-18

Issue

Section

Articles