Aplikasi K-Medoid dalam Regenerasi Pemain Sepak Bola
DOI:
https://doi.org/10.29313/statistika.v24i2.4611Keywords:
Sepakbola, Gelandang, K-Medoids Clustering, Principal Component AnalysisAbstract
ABSTRAK
Sepakbola merupakan olahraga paling populer. Dalam permainan sepakbola, peran gelandang sangat penting sehingga setiap klub sepakbola terutama di Liga-Liga top Eropa perlu meregenerasi gelandang untuk kompetisi Liga di musim-musim berikutnya. Penelitian ini bertujuan untuk melakukan pencarian pemain tengah pengganti yang memiliki kesamaan karakteristik bermain menggunakan metode K-Medoid Clustering. Metode Principal Component Analysis diimplementasikan untuk mengatasi multikolinieritas dan untuk mereduksi variabel yang digunakan, sehingga didapatkan 2 komponen utama. Kedua komponen utama ini menjelaskan 72.9% variansi populasi yang ada. K-Medoid Clustering menghasilkan 2 kelompok dan berdasarkan pengukuran jarak dengan metode Euclidean didapatkan bahwa Tchouameni merupakan gelandang yang paling mirip dengan Casemiro. Hasil ini mendukung keputusan Real Madrid untuk membeli Tchouameni sebagai keputusan yang tepat.
ABSTRACT
Football is the most popular sport. In the game of football, the role of midfielders is very important so that every football club, especially in the top European leagues, needs to regenerate midfielders for league competitions in the following seasons. This research aims to search for substitute midfielders who have similar playing characteristics using the K-Medoid Clustering method. The Principal Component Analysis method was implemented to overcome multicollinearity and to reduce the variables used, so that 2 main components were obtained. These two main components explain 72.9% of the population variance. K-Medoid Clustering produced 2 groups and based on distance measurements using the Euclidean method it was found that Tchouameni was the midfielder most similar to Casemiro. These results support Real Madrid's decision to buy Tchouameni as the right decision.
References
Amisatun, S., Wakhidah, N., & Putri, A. N. (2020). Penerapan Metode K-Medoid Untuk Pengelompokan Kondisi Jalan di Kota Semarang, JATISI, Vol. 6, No. 2..
Atmaja, E. H. S. (2019). Implementation of K-Medoid Clustering Algorithm to Cluster Crime Patterns in Yogyakarta, International Journal of Applied Sciences and Smart Technologies, Vol 01, Issue 01.
BBC. (2014, December 30). AirAsia QZ8501: Does bad weather cause plane crashes? Retrieved from BBC: http://www.bbc.com/news/world-30631968
Brillianro, B. A. (2021, Maret 2). Muda dan Konsisten. Retrieved from https://theflanker.id/: https://theflanker.id/muda-dan-konsisten-b3fe1f
Dihni, V. A. (2021, Oktober 5). Sepak Bola Jadi Olahraga Paling Populer di Dunia. Retrieved from databoks.katadata.co.id: https://databoks.katadata.co.id/datapublish/2021/10/05/sepak-bola-jadi-olahraga-paling-populer-di-dunia
Ebejer. (n.d.). Formation In Football Deffensive and Attacking. Retrieved from fieldinsider.com: https://fieldinsider.com/defensive-attacking- formations/
Fazrul, I. (2023, Februari 15). 11 Posisi Pemain Sepak Bola Dan Tugasnya Di Lapangan. Ulasan Paling Lengkap. Retrieved from berita.99.co: https://berita.99.co/posisi-pemain-sepak-bola/
Febriyanti, S., & Nugraha, J. (2022). Application of K-Medoid Clustering to Increase the 2020 Family Planning Program in Sleman Regency. Enthusiastic : International Journal of Applied Statistics and Data Science, 2(1), 10–18.
Habib, D. (2022). Top 50 Best Football Leagues in the World Ranking 2022. Retrieved from thefootballlovers.com..
Johnson, R. A., & Bhattacharyya, G. K. (2010). Statistics Principles & Methods. USA: John Wiley & Sons.
Johnson, R., & Wichern, D. (2007). Applied Multivariate Statistical Analysis. In R. Johnson, & D. Wichern, Applied Multivariate Statistical Analysis. New Jersey: earson Education, Inc.
Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons.
Leidiana, H. (2013). Penerapan Algoritma K-Nearest Neighbor Untuk PenentuaN Resiko Kredit Kepemilikan Kendaraan Bermotor. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 1(1), 65–76.
Li, X. (2013). Comparison and Analysis between Holt Exponential Smoothing and Brown Exponential Smoothing Used for Freight Turnover Forecast. Third International Conference on Intelligent System Design and Engineering Applications (pp. 453-456). IEEE.
Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. Academic Press.
Miftahuddin, Y., Umaroh, S., & Karim, F. (2020). PERBANDINGAN METODE PERHITUNGAN JARAK EUCLIDEAN, HAVERSINE, DAN MANHATTAN DALAM PENENTUAN POSISI KARYAWAN. Jurnal Tekno Insentif, 14(2), 69-77.
Nusufi, M. (2016). Hubungan Kemampuan Motor Ability dengan Keterampilan Bermain, Jurnal Ilmiah Mahasiswa Pendidikan Jasmani, Kesehatan dan Rekreasi, Vol. 1, No. 1, Pages 1-10.
Park, H. S., & Jun, C. H. (2009). A simple and fast algorithm for K-medoid clustering. Expert Systems with Applications, Volume 36, Issue 2, Part 2,Pages 3336-3341.
Pratama, A. (2017). PENILAIAN KETERAMPILAN DASAR SEPAK BOLA PASSING DAN . 6, 41.
Riyanto, B. (2019). Penerapan Algoritma K-medoid Clustering Untuk Pengelompokan Penyebaran Diare di Kora Medan.
Saputra, Z. (2011). Analisis Perancangan Program Aplikasi Untuk Klasifikasi Menggunakan KNN. Skripsi, Teknik Informatika FTI UII, Yogyakarta.
Sousa. (1984). The role of disturbance in natural communities. Annual Review of Ecology and Systematics, 353-391.
Sudrajat, I. ( 2021, Agustus 6). Mengenal Posisi Pemain Lini Tengah dalam Sepak Bola. Retrieved from skor.id: https://skor.id/post/skorpedia-mengenal-posisi-pemain-lini-tengah-dalam-sepak-bola-01389067
Suhail, Y., Rajpoot, N., & Markham, M. (2011). Principal Component Analysis for Dimension Reduction in Massive Data Sets with Applications to Gene Expression Analysis.
Tukey. (1977). Exploratory data analysis. Addison-Wesley.
Utari, D. (2019). Modul Praktikum Analisis Regresi Terapan dengan R. Yogyakarta: Universitas Islam Indonesia.
Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2011). Probability & Statistics for Engineers & Scientists 9th Ed. USA: Pearson.
Wicaksono, R. H. (2022). Penerapan Principal Component Analysis, K-Means Clustering dan K-Nearest Neighbors Dalam Mencari Pemain Belakang.
Yadav, R., & Sharma, A. (2012). Advanced Methods to Improve Performance of K-Means Global Journal of Computer Science and Technology Volume XII Issue IX Version I, Global Journals Inc. (US).