Peningkatan Distribusi Bantuan Sosial di Pangkalpinang dengan Pengelompokan Berbantuan Algoritma K-Means
DOI:
https://doi.org/10.29313/statistika.v24i2.4305Keywords:
Bantuan Sosial, Kemiskinan, K-Means Clustering, Koefisien Silhouette, PangkalpinangAbstract
ABSTRAK
Program bantuan sosial (Bansos) merupakan kebijakan penting yang diimplementasikan untuk mengatasi kemiskinan dan meningkatkan kesejahteraan masyarakat. Penelitian ini bertujuan untuk meningkatkan efektivitas program bantuan sosial di Kota Pangkalpinang melalui penerapan metode K-Means Clustering dalam pengelompokan kelurahan dengan tingkat kesejahteraan rendah. Data yang digunakan adalah Data Terpadu Kesejahteraan Sosial (DTKS) yang mencakup penerima bantuan dari berbagai program seperti PBI, BST, dan lainnya. Metode K-Means Clustering diterapkan untuk mengelompokkan kelurahan berdasarkan indikator kemiskinan, yang kemudian dianalisis untuk profilisasi cluster. Analisis Principal Component Analysis (PCA) dilakukan untuk mengatasi multikolinearitas antar variabel. Silhouette coefficient digunakan untuk menentukan jumlah cluster yang ideal untuk memastikan validitas pengelompokan. Hasil penelitian menunjukkan tiga cluster utama dengan nilai silhouette coefficient sebesar 0.458. Cluster pertama memiliki penerima bantuan terbanyak, sedangkan cluster ketiga memiliki penerima bantuan terendah. Penggunaan metode ini diharapkan dapat meningkatkan efektivitas dan efisiensi distribusi bantuan sosial dengan memastikan bantuan tepat sasaran sesuai dengan tingkat kemiskinan masing-masing kelurahan. Oleh karena itu, penelitian ini diharapkan dapat membantu kebijakan bantuan sosial Kota Pangkalpinang.
ABSTRACT
The social assistance program (Bansos) is an important policy implemented to address poverty and improve community welfare. This research aims to improve the effectiveness of social assistance programs in Pangkalpinang City through the application of the K-Means clustering method in grouping sub-districts with low welfare levels. The data used is the Integrated Social Welfare Data (SWD), which includes recipients of assistance from various programs such as PBI, BST, and others. The K-Means clustering method is applied to group villages based on poverty indicators, which are then analyzed for cluster profiling. Principal Component Analysis (PCA) is conducted to address multicollinearity among variables. The silhouette coefficient is used to determine the ideal number of clusters to ensure the validity of the clustering. The research results show three main clusters with a silhouette coefficient value of 0.458. The first cluster has the most aid recipients, while the third cluster has the fewest aid recipients.The use of this method is expected to improve the effectiveness and efficiency of social assistance distribution by ensuring that aid is targeted according to the poverty levels of each sub-district. Therefore, this research is expected to assist the social assistance policies of Pangkalpinang City.
References
Fadilah, D., & Rosha, M. (2022). Analisis Faktor Pada Faktor-Faktor Yang Mempengaruhi Stres Guru SD Selama Sistem Pembelajaran Daring Era Covid-19 (Studi Kasus di SD Kecamatan Padang Timur). Journal of Mathematics UNP, 7(4), 75. https://doi.org/10.24036/unpjomath.v7i4.13990
Filki, Y. (2022). Algoritma K-Means Clustering dalam Memprediksi Penerima Bantuan Langsung Tunai (BLT) Dana Desa. Jurnal Informatika Ekonomi Bisnis, 4, 166–171. https://doi.org/10.37034/infeb.v4i4.166
Handoyo, R., Mangkudjaja, R., & Nasution, S. M. (2014). Perbandingan Metode Clustering Menggunakan Metode Single Linkage dan K - Means pada Pengelompokan Dokumen. Jurnal SIFO Mikroskil, 15(2), 73–82.
Hasibuan, A., Kembuan, D. R. E., Manoppo, C. T. M., & Hermanto, M. T. (2023). Optimization of k-means algorithm in grouping data using the statistical gap method. Journal of Intelligent Decision Support System (IDSS), 6(3), 112–120. https://doi.org/https://doi.org/10.35335/idss.v6i3.149
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Vol. Second Edition. Springer New York. https://doi.org/10.1007/978-0-387-84858-7
Heraldi, H. Y., Aprilia, N. C., & Pratiwi, H. (2019). Analisis Cluster Intensitas Kebencanaan di Indonesia Menggunakan Metode K-Means. Indonesian Journal of Applied Statistics, 2(2), 137. https://doi.org/10.13057/ijas.v2i2.34911
Kementerian Sosial. (2021, September 27). Mensos: Data Penerima Bantuan Iuran Jaminan Kesehatan Sudah Terintegrasi dengan DTKS. Https://Kemensos.Go.Id/Mensos-Data-Penerima-Bantuan-Iuran-Jaminan-Kesehatan-Sudah-Terintegrasi-Dengan-Dtks.
Kim, J. H. (2019). Multicollinearity and misleading statistical results. Korean Journal of Anesthesiology, 72(6), 558–569. https://doi.org/10.4097/kja.19087
Manurung, J., Ramadhan, P. S., & Suryanata, M. (2020). Perbandingan Algoritma K-Means Dan K-Medoids Untuk Pengelompokkan Data Masyarakat Miskin Pada Kantor Camat Hatonduhan STMIK Triguna Dharma. Jurnal CyberTech, 3(9), 1522–1531. https://doi.org/https://doi.org/10.53513/jct.v3i9.3161
Marlina, M., Nurwasya, N., Valeriani, D., & Wulandari, A. (2022). Korelasi Umur, Penghasilan Tetap, Pendidikan Terakhir dan Rata-Rata Pengeluaran Pada Rumah Tangga Miskin di Kota Pangkalpinang. Equity: Jurnal Ekonomi, 10(2), 37–48. https://doi.org/10.33019/equity.v10i2.112
Nana, S., Herman, Nining, R., Rini, A., & Wijaya, Y. A. (2022). Grouping of Sewing Tool Assistance Recipients Using K-Means Clustering Analysis. International Journal of Social Science, 2(2), 1513–1522. https://doi.org/10.53625/ijss.v2i2.3085
Putra, L. G. R., & Anggrawan, A. (2021). Pengelompokan Penerima Bantuan Sosial Masyarakat dengan Metode K-Means. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(1), 205–214. https://doi.org/10.30812/matrik.v21i1.1554
Rahma, R. W., Malau, N. A., Sova, M., Ngii, E., Sugiri, T., Ardhiarisca, O., Astuti, Y., & Saidah, H. (2022). Statistik Deskriptif. Widina. www.penerbitwidina.com
Ramadani, S., I, A., & Pardede, A. M. H. (2019). Metode K-Means Untuk Pengelompokan Masyarakat Miskin Dengan Menggunakan Jarak Kedekatan Manhattan City Dan Euclidean (Studi Kasus Kota Binjai). Journal Information System Development, 4(2). https://binjaikota.bps.go.id/
Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1
Skoufias, E., Tiwari, S., & Zaman, H. (2011). Can We Rely on Cash Transfers to Protect Dietary Diversity During Food Crises? Estimates from Indonesia. In https://documents.worldbank.org/en/publication/documents-reports/documentdetail/278061468269665919/can-we-rely-on-cash-transfers-to-protect-dietary-diversity-during-food-crises-estimates-from-indonesia. https://www.researchgate.net/publication/228295599
Sumarto, S., & Suryahadi, A. (2004). The Role of Agricultural Growth in Poverty Reduction in Indonesia (Issue 60724). https://ideas.repec.org/p/pra/mprapa/60724.html
Sumarto, S., Suryahadi, A., & Widyanti, W. (2005). Assessing the Impact of Indonesian Social Safety Net Programmes on Household Welfare and Poverty Dynamics. The European Journal of Development Research, 17(1), 155–177. https://doi.org/10.1080/09578810500066746
Tendean, T., & Purba, W. (2020). Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means. Jurnal Sains Dan Teknologi, 1(2), 5–11. https://doi.org/https://doi.org/10.34013/saintek.v1i2.31
Wahyuni, M. (2020). Statistik Deskriptif untuk Penelitian Olah Data Manual dan SPSS Versi 25. Bintang Pustaka Madani.