https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Pemodelan GSTARIMA untuk Peramalan Peningkatan Gross Domestic Product pada Empat Negara di Asia Timur

Authors

  • Hasnita Fakultas Ekonomi dan Bisnis Islam IAIN Palangka Raya, Indonesia
  • Arif Mubarok Fakultas Ekonomi dan Bisnis Islam IAIN Palangka Raya, Indonesia

DOI:

https://doi.org/10.29313/statistika.v24i2.4008

Keywords:

Generalized Space-Time Autoregressive Integrated Moving Average, Gross Domestic Product, Space-Time Autoregressive Integrated Moving Average

Abstract

ABSTRAK

Data pertumbuhan GDP empat negara asia timur tidak hanya bergantung pada waktu (time), tetapi juga bergantung pada tempat (space). Model space time merupakan metode yang populer digunakan dalam peramalan untuk menganalisis data time series yang mempertimbangkan faktor time dan place secara bersamaan. Dalam hal pengambilan parameter, model untuk GSTARIMA dan model untuk STARIMA berbeda. Untuk model STARIMA, menggunakan lokasi penelitian yang sama, sementara model GSTARIMA digunakan untuk lokasi penelitian yang tidak sama (heterogen) dan ditunjukkan dalam matriks pembobot. Tujuan penelitian ini adalah untuk menemukan model terbaik antara GSTARIMA atau STARIMA guna memodelkan pertumbuhan GDP dari beberapa negara di Asia timur yakni Indonesia, China, Japan, dan Korea Selatan. Interval data dimulai dari tahun 1962 hingga tahun 2017. Karena terdapat hubungan yang signifikan, pemodelan menggunakan STARIMA dan GSTARIMA diperlukan untuk mengevaluasi pertumbuhan GDP. Kedua model ini dikembangkan melalui pendekatan VAR dengan orde spasial satu, yang mencakup konfigurasi STAR(1,1) dan GSTAR(1,1) masing-masing. Hasil pengujian menunjukkan bahwa model terbaik untuk meramalkan peningkatan GDP di masa depan adalah STAR(1), dengan nilai RMSE terkecil. Melalui pemodelan ini dapat meramalkan kondisi GDP di masa mendatang dan mengevaluasi apakah hubungan internasional terutama dalam hal kerjasama ekonomi yang telah dijalankan pada ke empat negara berdampak positif terhadap pertumbuhan ekonomi.

ABSTRACT

 The GDP growth data of four East Asian countries depends not only on time but also on space. The space-time model is a popular method used in forecasting to analyze time series data while simultaneously considering both time and spatial factors. In terms of parameter selection, the models for GSTARIMA and STARIMA differ. The STARIMA model uses the same research location, while the GSTARIMA model is applied to heterogeneous research locations, as represented in the weighting matrix. The purpose of this study is to determine the best model between GSTARIMA and STARIMA to model GDP growth in several East Asian countries, namely Indonesia, China, Japan, and South Korea. ...

References

Desi Syahrani, Hannisa Novita Sari Sitorus and Roma Sihol Marito Sitompul (2022) ‘The Influence of International Trade on Indonesia’s Economic Growth’, International Journal of Business and Applied Economics, 1(1), pp. 27–30. Available at: https://doi.org/10.55927/ijbae.v1i1.2147.

Epperson, B.K. (2000) ‘Spatial and Space–Time Correlations in Ecological Models’, Ecological Modelling, 132(1–2), pp. 63–76. Available at: https://doi.org/10.1016/S0304-3800(00)00305-7.

Gajdosova, K. (2023) ‘Role of GDP in the Sustainable Growth Era’, SocioEconomic Challenges, 7(3), pp. 94–112. Available at: https://doi.org/10.61093/sec.7(3).94-112.2023.

Giacomini, R. and Granger, C.W.J. (2004) ‘Aggregation of Space-Time Processes’, Journal of Econometrics, 118(1–2), pp. 7–26. Available at: https://doi.org/10.1016/S0304-4076(03)00132-5.

Kamarianakis, Y., Kanas, A. and Prastacos, P. (2005) ‘Modeling Traffic Volatility Dynamics in an Urban Network’, Transportation Research Record: Journal of the Transportation Research Board, 1923(1), pp. 18–27. Available at: https://doi.org/10.1177/0361198105192300103.

Kumari, R. and Singh, S.K. (2022) ‘System GMM-based Model for Monitoring Joint Impact of ICT-infrastructure, Financial Development, and Trade-openness on Economic-growth’, pp. 1–28. Available at: https://doi.org/10.21203/rs.3.rs-1353785/v1.

Kyriakidis, P.C. and Journel, G. (1999) ‘Geostatistical Space – Time Models : A Review 1’, International Association for Mathematical Geology, 31(6), pp. 651–684.

Laamena, N.S. (2017) ‘Pendekatan Model Generalized Space Time Autoregressive (GSTAR) Untuk Pemodelan Data Gempa’, FT-TEKNIK USNI, Vol. 1 No.

Pfeifer, phillip E. and Deutsch, S.J. (1980) ‘Identification and Interpretation of First Order Space-Time ARMA Models’, Technometrics, 22(3), pp. 397–408. Available at: https://doi.org/10.1080/00401706.1980.10486172.

Prisandy, D.E. and Suhartono, . (2017) ‘Penerapan Metode GSTAR (P1) Untuk Meramalkan Data Penjualan Rokok di Tiga Lokasi’, Widya Teknik, 7(2), pp. 199–210. Available at: http://journal.wima.ac.id/index.php/teknik/article/view/1275.

Purwaningsih, T., Erfiani and Djuraidah, A. (2014) Kajian Pengaruh Matriks Pembobot Spasial dalam Model Data Panel Spasial. Institut Pertanian Bogor. Available at: https://doi.org/http://repository.ipb.ac.id/handle/123456789/73014.

Ruchjana, B.N., Borovkova, S.A. and Lopuhaa, H.P. (2012) ‘Least Squares Estimation of Generalized Space Time Autoregressive (GSTAR) Model And Its Properties’, in, pp. 61–64. Available at: https://doi.org/10.1063/1.4724118.

Siregar, D. (2015) Perbandingan Pemodelan Dan Peramalan Harga Gula Berdasarkan Model Space Time Arima Dan Generalized Space Time Arima. Institut Pertanian Bogor. Available at: http://repository.ipb.ac.id:8080/handle/123456789/78734?show=full.

Talungke, Y., Nainggolan, N. and Hatidja, D. (2015) ‘Model Generalized Space Time Autoregressive (GSTAR) dengan Analisis Data Menggunakan Software R’, d’CARTESIAN, 4(2), p. 122. Available at: https://doi.org/10.35799/dc.4.2.2015.8649.

Zhou, M. and Buongiorno, J. (2006) ‘Space-Time Modeling of Timber Prices’, Journal of Agricultural and Resource Economics, 31(1), pp. 40–56. Available at: http://www.jstor.org/stable/40987305.

Downloads

Published

2024-11-30

Issue

Section

Articles