Forecasting Spare Part pada Commercial Vehicle PT XYZ dengan Klasifikasi ADI-CV
DOI:
https://doi.org/10.29313/statistika.v24i1.3546Keywords:
After Sales, Forecasting, Spare PartAbstract
ABSTRAK
After Sales memiliki kontribusi positif pada pertumbuhan profit permintaan spare part suatu perusahaan. PT. XYZ merupakan agen tunggal pemegang merek mobil kendaraan niaga di Indonesia dengan visi menjadi market share terbesar secara global dipasar internasional. Peranan penting yang dilakukan PT. XYZ dalam upaya memenuhi seluruh kebutuhan permintaan domestik atau ekspor dengan langkah menerapkan rencana inventaris yang mencakup peramalan kebutuhan suku cadang setiap bulan. Pada kondisi saat ini metode yang digunakan oleh perusahaan hanya menggunakan metode peramalan dengan rata-rata 6 bulan terakhir atau Moving Average yang digunakan untuk menyiapkan seluruh suku cadang PT. XYZ. Metode ini dinilai kurang efektif karena ketika terjadinya bentuk permintaan spare part yang memiliki tingkat variasi tinggi maka penyimpangan pada hasil peramalan menyebabkan back order terhadap pelanggan dan loss sales yang dapat mempengaruhi nilai suatu perusahaan yaitu fast and easy process. Berdasarkan permasalahan tersebut, maka PT. XYZ membutuhkan perbaikan terhadap mekanisme peramalan spare part-nya. Tujuan dari dilakukan penelitian yaitu menghasilkan metode klasifikasi spare part berdasarkan bentuk permintaannya dan memutuskan metode peramalan yang paling tepat untuk masing-masing kelompok spare part dengan langkah membandingkan enam metode peramalan yaitu metode Croston Optimized, TSB, SESOpt, ADIDA, IMAPA, Moving Average. Semua metode peramalan akan dibandingkan atas dasar parameter nilai forecasting error. Pada hasil yang didapat menunjukkan metode Croston Optimized memiliki hasil yang lebih baik dari metode moving average dengan memperbaiki kesalahan sebesar 7%.
ABSTRACT
After Sales has a positive contribution to the profit growth of a company's spare part demand. PT XYZ is the sole agent of commercial vehicle car brand holders in Indonesia with a vision to become the largest market share globally in the international market. An important role played by PT XYZ in an effort to meet all domestic or export demand needs by implementing an inventory plan that includes forecasting the need for spare parts on a monthly basis. In the current condition, the method used by the company only uses a forecasting method with the average of the last 6 months or Moving Average which is used to prepare all spare parts of PT. XYZ. This method is considered less effective because when there is a form of spare part demand that has a high level of variation, deviations in forecasting results cause back orders to customers and loss of sales which can affect the value of a company, namely fast and easy process. Based on these problems, PT XYZ needs improvements to its spare part forecasting mechanism. The purpose of the research is to produce a spare part classification method based on the form of demand and decide the most appropriate forecasting method for each spare part group by comparing six forecasting methods, namely the Croston Optimized method, TSB, SESOpt, ADIDA, IMAPA, Moving Average. All forecasting methods will be compared on the basis of the forecasting error value parameter. The results obtained show that the Croston Optimized method has better results than the moving average method by correcting an error of 7%.
References
Altay, N., & Litteral, L. A. (2011). Service Parts Management. Demand Forecasting and Inventory Control, 1st Edition, XIV.
Budiningsih, E., & Jauhari, W. A. (2017). Analisis Pengendalian Persediaan Spare Part Mesin Produksi di PT. Prima Sejati Sejahtera dengan Metode Continuous Review. PERFORMA: Media Ilmiah Teknik Industri, 16(2).
F. Klug, (2018). Logistics Management in The Automotive Industry: Basics of Logistics in Automotive Engineering, 2nd ed. Heidelberg: SpringerVerlag.
Mardianto, T. (2021). Perhitungan Harga Pokok Produksi Sebagai Dasar Penentuan Harga Jual Pada Perusahaan Karoseri Kuda Terbang Malang. JEA17: Jurnal Ekonomi Akuntansi, 6(2), 263-278.
Jiang, P., Liu, X., Huang, Y., & Yuan, Y. (2017). An Adaptive Data-Driven Model for Erratic Demand Forecasting. IFAC-PapersOnLine, 50(1), 9020-9025.
Putri, N. H., Sukarno, I., & Dewabharata, A. (2022). Inventory Control Analysis of Flowline Pipe (Case Study: PT. Pertamina Hulu Rokan Field Limau). Journal of Emerging Supply Chain, Clean Energy, and Process Engineering, 1(2), 97-106.
Kaya, G. O., Sahin, M., & Demirel, O. F. (2020). Intermittent Demand Forecasting: A Guideline for Method Selection. Sādhanā, 45, 1-7.
Ramadhan, D. I., & Santosa, B. (2021). Analisis Kinerja Peramalan dan Klasifikasi Permintaan Auto Parts Berbasis Data Mining. Jurnal Teknik ITS, 9(2), A162-A169.
Simamora, Y. K., Puspita, E., & Herrhyanto, N. (2019). Peramalan Jumlah Permintaan Spare Part Lcv Bushing Struthbar Dengan Menggunakan Metode Croston Dan Metode Syntetos Boylan Approximation. Jurnal Eurekamatika, 7(1), 47-57.
Spiliotis, E., Makridakis, S., Semenoglou, A. A., & Assimakopoulos, V. (2022). Comparison of Statistical and Machine Learning Methods for Daily SKU Demand Forecasting. Operational Research, 22(3), 3037-3061.