https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

ARIMA (p, d, q) Modeling for Predicting Exports of Fresh and Chilled Fish Based on Market Conditions and Main Destination Countries : The Case of Indonesia 2012-2022

Authors

  • Vitri Aprilla Handayani Institut Teknologi Batam
  • Eko Sulistyono Institut Teknologi Batam
  • Hery Sunarsono Institut Teknologi Batam
  • Adamsyam Arafi Institut Teknologi Batam
  • Diana Sari Harahap Institut Teknologi Batam

DOI:

https://doi.org/10.29313/statistika.v24i1.3376

Keywords:

Exports, Fresh-Chilled Fish, Forecasting, ARIMA Model

Abstract

ABSTRACT

Fresh and chilled fish are the largest contributor to Indonesia's fishery product exports, accounting for a share of 45% or around USD 2.2 billion in 2021. The main destination countries for Indonesia's fresh and chilled fish exports include China, the United States, Japan, and other European countries. This research aims to analyze the factors influencing the export value of Indonesia's fresh and chilled fish, as well as to identify and evaluate the ARIMA (p, d, q) model based on historical data from 2012-2022. The result is an ARIMA (4,2,2) model with a MAPE value of 2.208 and a predicted value for the 2023 period of 4351 tons. This is in line with the large exports of fresh fish from Indonesia to various destination countries.

References

Asnawi, A., Luhur, E. S., & Suryawati, S. H. (2021). Model Permintaan Ekspor Udang Olahan Indonesia Oleh Pasar Jepang, Amerika Serikat Dan Uni Eropa Pendekatan Error Correction Model (Ecm). Jurnal Sosial Ekonomi Kelautan Dan Perikanan, 16(2), 193. https://doi.org/10.15578/jsekp.v16i2.9768

Da Silva, V. do C., Krisnamurthi, B., & Harmini. (2023). Analisis Faktor-Faktor Yang Memengaruhi Ekspor Ikan Tuna Beku Indonesia. Forum Agribisnis, 13(2), 164–178. https://doi.org/10.29244/fagb.13.2.164-178

Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand using ARIMA model. International Journal of Engineering Business Management, 10, 1–9. https://doi.org/10.1177/1847979018808673

Febianah, M., Tyas, S. J. S., Solikhah, F., Herviansyah, F., Rosalia, A. A., & Minsaris, L. O. A. (2021). Model Peramalan Produksi Perikanan Tangkap di Pelabuhan Perikanan Kejawanan Cirebon Jawa Barat. Jurnal Vokasi Ilmu-Ilmu Perikanan (Jvip), 2(1), 1. https://doi.org/10.35726/jvip.v2i1.545

Febryanti, D. I., & Utami, D. A. (2022). Pemanfaatan Platform Digital dalam Pemasaran Produk Perikanan dan Kelautan (Studi Kasus Aruna Indonesia). Growth Dan Manajemen Lingkungan, 12(1), 66–83.

Handayani, V. A., Sulistyono, E., Hernando, L., Majiid, A., & Sunar-, H. (2023). Data exploration of marine cultivation types using cluster analysis with complete-linkage method. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), X(1).

Hernandez-Matamoros, A., Fujita, H., Hayashi, T., & Perez-Meana, H. (2020). Forecasting of COVID19 per regions using ARIMA models and polynomial functions. Applied Soft Computing Journal, 96, 106610. https://doi.org/10.1016/j.asoc.2020.106610

Hikmah, H., Shafitri, N., Zulham, A., & Purnomo, A. H. (2021). Strategi Pengembangan Pasar Ikan Demersal di Kabupaten Merauke. Buletin Ilmiah Marina Sosial Ekonomi Kelautan Dan Perikanan, 7(1), 43. https://doi.org/10.15578/marina.v7i1.9000

Horváth, L., Kokoszka, P., & Rice, G. (2014). Testing stationarity of functional time series. Journal of Econometrics, 179(1), 66–82. https://doi.org/10.1016/j.jeconom.2013.11.002

Irawati, H., Kusnandar, F., & D Kusumaningrum, H. (2019). Analisis Penyebab Penolakan Produk Perikanan Indonesia Oleh Uni Eropa Periode 2007 – 2017 Dengan Pendekatan Root Cause Analysis. Jurnal Standardisasi, 21(2), 149. https://doi.org/10.31153/js.v21i2.757

Latuheru, A. (2022). Pengaruh Nilai Tukar Terhadap Volume Ekspor Ikan Segar Dari Indonesia Ke Singapura. Journal of Economics Review (JOER), 2(1), 31–39. https://doi.org/10.55098/joer.2.1.31-39

Lingkup, D. I., & Dan, A. (2011). Daya Saing Ekspor Produk Perikanan Indonesia. Journal of Agricultural and Resource Economics, 10(Meningkatkan daya saing ekspor produk perikanan dilingkup ASEAN), 1–10.

Liu, S., & Zhou, D. J. (2024). Using cross-validation methods to select time series models: Promises and pitfalls. British Journal of Mathematical and Statistical Psychology, 77(2), 337–355. https://doi.org/10.1111/bmsp.12330

Majiid, A., & Handayani, V. A. (2023). Forecasting Data Inflasi Years on Years Kota Batam Tahun 2017-2020. Jurnal Sintak, 1(2), 29–34. https://doi.org/

McGonigle, E. T., Killick, R., & Nunes, M. A. (2022). Modelling time-varying first and second-order structure of time series via wavelets and differencing∗. Electronic Journal of Statistics, 16(2), 4398–4448. https://doi.org/10.1214/22-EJS2044

Rahmah, A., & Sitompul, K. (2023). Proyeksi Ketersediaan Produksi Ikan Tuna , Cakalang Dan Tongkol Di Pelabuhan Perikanan Nusantara Sibolga. Jurnal Penelitian Perikanan Indonesia, 28(September 2022), 157–165.

Siami-Namini, S., Tavakoli, N., & Siami Namin, A. (2018). A Comparison of ARIMA and LSTM in Forecasting Time Series. Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018, 1394–1401. https://doi.org/10.1109/ICMLA.2018.00227

Sunarsono, H., Rahmiati, S., & Handayani, V. A. (2022). Analisa Sudut Jaring untuk Mengoptimalkan Hasil Tangkapan Ikan pada Keramba Tancap Nelayan Tradisional. SITEKIN: Jurnal Sains, Teknologi Dan Industri, 20(1), 248–254.

Van Rossum, H. H. (2019). Moving average quality control: Principles, practical application and future perspectives. Clinical Chemistry and Laboratory Medicine, 57(6), 773–782. https://doi.org/10.1515/cclm-2018-0795

Wicaksana, I., Wijaya, I. P. E., Suhaeni, S., & Syahputra, A. fahmi. (2022). Analisis Faktor-Faktor yang Memengaruhi Ekspor Komoditas Perikanan: Pendekatan Gravity Model. Jurnal Agrimanex: Agribusiness, Rural Management, and Development Extension, 3(1), 1–13. https://doi.org/10.35706/agrimanex.v3i1.6966

Yonvitner, Boer, M., Taryono, Riyanto, M., Kurnia, R., Setyobudiandi, I., Santoso, J., Sukri, N., & Abdul Aziz, K. (2020). Estimasi Stok Suplai Kebutuhan Bahan Baku untuk Industri Pengolahan Ikan. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(1), 158–165. https://doi.org/10.17844/jphpi.v23i1.31058

Yusuf, R., Arthatiani, F. Y., & Putri, H. M. (2017). Peluang Pasar Ekspor Tuna Indonesia: Suatu Pendekatan Analisis Bayesian. Kebijakan Sosial Ekonomi Kelautan Dan Perikanan, 7(1), 39–50.

Downloads

Published

2024-05-29

Issue

Section

Articles