Identifikasi Autokorelasi Spasial Warisan Budaya Tak Benda di Indonesia Menggunakan Indeks Moran
DOI:
https://doi.org/10.29313/statistika.v23i2.2675Keywords:
Kebudayaan, ICH, autokorelasi spasial, indeks moran, Culture, Spatial AutocorrelationAbstract
ABSTRAK
Perkembangan peradaban manusia merupakan bagian dari hasil akulturasi maupun asimilasi kebudayaan. Indonesia adalah rumah bagi 1.340 suku bangsa dan memiliki 2.500 jenis bahasa. Ini juga memiliki ribuan benda dan tak benda warisan budaya. Oleh karena itu, kekayaan negara yang tidak ternilai ini harus dimanfaatkan sepenuhnya untuk menjadi kekuatan yang mendorong kemajuan Indonesia. Arah pembangunan seharusnya tidak hanya bertumpu pada peningkatan perekonomian semata, melainkan juga harus melibatkan unsur kebudayaan sebagai hal yang harus diperhatikan. penelitian ini bertujuan melakukan pemetaan ICH agar dapat diketahui potensi pembangunan berdasarkan budaya di setiap provinsi. Selain itu, peneliti juga melakukan pengujian terkait ada/tidaknya autokorelasi/hubungan spasial antarprovinsi. Penghitungan autokorelasi spasial dilakukan dengan menggunakan indeks Moran dengan dua pendekatan bobot spasial. Hasil penelitian menunjukkan bahwa ICH secara signifikan memiliki autokorelasi spasial
ABSTRACT
The development of human civilization is part of the result of acculturation and cultural assimilation. Indonesia is home to 1,340 ethnic groups with 2,500 types of languages and a wealth of cultural heritage, both tangible and intangible, which amounts to thousands. Therefore, the invaluable wealth of the country should be maximized into a force to encourage development in Indonesia. The direction of development should not only rely on increasing the economy, but should also involve elements of culture as a matter that must be considered. This study aims to map ICH in order to know the potential for development based on culture in each province. In addition, researchers also conducted tests related to the presence/absence of autocorrelation/spatial relations between provinces. Spatial autocorrelation was calculated using the Moran index with two spatial weight approaches. The results showed that ICH had a significant spatial autocorrelation.
References
Badan Pusat Statistik. (2018). Statistik Sosial Budaya. BPS.
Borovkova, S., Lopuhaä, H. P., & Ruchjana, B. N. (2008). Consistency and asymptotic normality of least squares estimators in generalized STAR models. Statistica Neerlandica, 62(4), 482–508. https://doi.org/10.1111/j.1467-9574.2008.00391.x
Cliff, A. D., & Ord, J. K. (1975). Model Building and the Analysis of Spatial Pattern in Human Geography. Journal of the Royal Statistical Society: Series B (Methodological), 37(3), 297–328. https://doi.org/10.1111/j.2517-6161.1975.tb01548.x
Fischer, M. M., & Arthur, G. (2010). Handbook of applied spatial analysis: software tools, methods and applications. Springer.
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2000). Quantitative geography: perspectives on spatial data analysis. Sage.
Haining, R. P. (2003). Spatial data analysis: theory and practice. Cambridge University Press.
Huang, R., Liu, M., & Ding, Y. (2020). Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis. The Journal of Infection in Developing Countries , 14(03), 246–253.
Jenks, C. (1993). Culture (Konsep Budaya) Oleh: CHRIS JENKS Penerjemah: Arie Setyaningrum Pamungkas Editor: Novi Kurnia BUDAYA.
Kemdikbud. (2018). Warisan Budaya Takbenda Indonesia. https://warisanbudaya.kemdikbud.go.id/?tentang&active=pengertian%20dan%20domain%20warisan%20budaya%20takbenda
Nahak, H. M. (2019). Upaya melestarikan budaya indonesia di era globalisasi. Jurnal Sosiologi Nusantara, 5(1), 65–76.
UNESCO. (2003). What is Intangible Cultural Heritage? https://ich.unesco.org/en/what-is-intangible-heritage-00003
Wagesho, N. N. K. G., & Jain, M. K. (2013). Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal, 58(2), 354–373.
Waller, L. A., & Gotway, C. A. (2004). Applied spatial statistics for public health data. John Wiley & Sons.