https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Analisis Ketertinggalan Desa di Provinsi Papua dan Papua Barat Menggunakan Association Rule Mining

Authors

  • Etsa Primanda Politeknik Statistika STIS
  • Siskarossa Ika Oktora Politeknik Statistika STIS

DOI:

https://doi.org/10.29313/statistika.v24i1.2302

Keywords:

Association Rule Mining, Desa Tertinggal, Karakteristik Utama Ketertinggalan Desa

Abstract

ABSTRAK

Pada hakikatnya, pembangunan dimaksudkan untuk mengupayakan kondisi kehidupan yang lebih layak. Namun, data Indeks Pembangunan Desa 2018 menunjukkan persentase desa tertinggal di Pulau Papua paling banyak dibandingkan pulau lainnya. Terlebih lagi, penelitian mengenai karakteristik utama ketertinggalan desa di wilayah tersebut belum dilakukan secara komprehensif. Oleh sebab itu, penelitian ini bertujuan untuk mengetahui gambaran umum desa tertinggal, serta menganalisis karakteristik utama ketertinggalan desa di Provinsi Papua dan Papua Barat. Sumber data yang digunakan adalah data indikator Indeks Pembangunan Desa 2018 yang diperoleh dari Subdirektorat Statistik Ketahanan Wilayah Badan Pusat Statistik (BPS) berdasarkan Pendataan Potensi Desa 2018. Metode analisis yang digunakan adalah analisis deskriptif menggunakan diagram batang dan peta tematik, serta teknik data mining menggunakan association rule mining. Hasil analisis menunjukkan Kabupaten Tolikara, Provinsi Papua dan Kabupaten Pegunungan Arfak, Provinsi Papua Barat memiliki persentase desa tertinggal yang tertinggi. Sebagian besar desa tertinggal di Provinsi Papua dan Papua Barat berada di wilayah dengan topografi dataran tinggi dan pegunungan. Hasil association rule mining menunjukkan karakteristik utama ketertinggalan desa sebagian besar kabupaten di Provinsi Papua adalah pelayanan kesehatan, sarana transportasi, dan infrastruktur ekonomi. Sementara itu, karakteristik utama ketertinggalan desa sebagian besar kabupaten di Provinsi Papua Barat adalah pelayanan kesehatan.

ABSTRACT

The goal of development is to seek more decent living conditions. However, the Village Development Index 2018 data shows that the percentage of rural underdevelopment on Papua Island is the highest compared to other islands. Moreover, researchers have yet to conduct comprehensive research in the region on the main characteristics of rural underdevelopment. Therefore, this study aims to observe the general description of rural underdevelopment and analyze the main characteristics of rural underdevelopment in Papua and West Papua Provinces. The data source used is the Village Development Index 2018 indicator data from the Regional Resilience Statistics Sub-Directorate of Badan Pusat Statistik (BPS) based on the Village Potential Data 2018. The analytical methods used are descriptive analysis using bar charts, thematic maps, and data mining techniques, namely association rule mining. The results show that the percentages of rural underdevelopment in Tolikara Regency, Papua Province, and Arfak Mountains Regency, West Papua Province, are higher among other regions. Areas characterized by highlands and mountainous terrain in Papua and West Papua Provinces concentrate most of the rural underdevelopment. Then, the results of association rule mining show that the main characteristics of rural underdevelopment in most districts in Papua Province are health services, transportation facilities, and economic infrastructure. Meanwhile, the main characteristic of rural underdevelopment in most districts in West Papua Province is health services.

References

Agusta, I. (2014). Ketimpangan Wilayah dan Kebijakan Penanggulangan di Indonesia: Kajian Isu Strategis, Historis, dan Paradigmatis Sejak Pra Kolonial. 1 ed. Jakarta: Yayasan Pustaka Obor Indonesia.

Alangari, N. dan Alturki, R. (2020). Association Rule Mining in Higher Education: A Case Study of Computer Science Students, in, hal. 311–328. Tersedia pada: https://doi.org/10.1007/978-3-030-13705-2_13.

Arianti, N.N. dan Cahyadinata, I. (2016). Kajian Dampak Pemekaran Wilayah terhadap Kesenjangan Ekonomi Antar Daerah Pesisit di Provinsi Bengkulu, AGRISEP, 16(1), hal. 27–36.

Arifah, M.N. dan Kusumastuti, N. (2019). Strategi Mempercepat Pembangunan Desa Mandiri: Studi Di Desa Kemadang Gunungkidul, Jurnal Pemberdayaan Masyarakat: Media Pemikiran dan Dakwah Pembangunan, 2(1), hal. 169–188. Tersedia pada: https://doi.org/10.14421/jpm.2018.021-09.

Azen, R. dan Walker, C.M. (2011). Categorical Data Analysis for the Behavioral and Social Sciences. Routledge. Tersedia pada: https://doi.org/10.4324/9780203843611.

Bayardo, R.J., Agrawal, R. dan Gunopulos, D. (1999). Constraint-Based Rule Mining in Large, Dense Databases, in Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337). IEEE, hal. 188–197. Tersedia pada: https://doi.org/10.1109/ICDE.1999.754924.

Bhakti, I.N. dan Pigay, N. (2012). Menemukan Akar Masalah dan Solusi Atas Konflik Papua: Supenkah?, Jurnal Penelitian Politik, 9(1).

BPS(2019). Indeks Pembangunan Desa 2018. Jakarta: Badan Pusat Statistik (BPS).

BPS (2020). Indeks Harga Konsumen dan Inflasi di Provinsi Papua 2019. Jayapura: Badan Pusat Statistik.

BPS (2022a.) [Metode Baru] Indeks Pembangunan Manusia 2016-2018. Tersedia pada: https://papua.bps.go.id/indicator/26/115/2/-metode-baru-indeks-pembangunan-manusia.html (Diakses: 7 Juli 2022).

BPS (2022b.) Gini Ratio Menurut Provinsi dan Daerah. Tersedia pada: https://www.bps.go.id/indicator/23/98/1/gini-ratio-menurut-provinsi-dan-daerah.html (Diakses: 26 Januari 2022).

BPS (2022c). Persentase Penduduk Miskin (P0) Menurut Provinsi dan Daerah 2018-2019. Tersedia pada: https://bps.go.id/indicator/23/192/2/persentase-penduduk-miskin-p0-menurut-provinsi-dan-daerah.html (Diakses: 6 Juli 2022).

Bramer, M. (2016). Principles of Data Mining. London: Springer London. Tersedia pada: https://doi.org/10.1007/978-1-4471-7307-6.

Chang, C.-J. dan Shyue, S.-W. (2009). A Study on the Application of Data Mining to Disadvantaged Social Classes in Taiwan’s Population Census, Expert Systems with Applications, 36(1), hal. 510–518. Tersedia pada: https://doi.org/10.1016/j.eswa.2007.09.047.

Collett, D., Temple, K.M. dan Wells, R.D. (2022). The Challenges of Providing Preventive Health Care in Rural America, Physician Assistant Clinics, 7(1), hal. 149–165. Tersedia pada: https://doi.org/10.1016/j.cpha.2021.08.006.

Fang, Y. dan Ying, B. (2016). Spatial Distribution of Mountainous Regions and Classifications of Economic Development in China, Journal of Mountain Science, 13(6), hal. 1120–1138. Tersedia pada: https://doi.org/10.1007/s11629-015-3714-4.

Gorunescu, F. (2011). Data Mining: Concepts, Models, and Techniques. 1 ed. Berlin, Heidelberg: Springer Berlin Heidelberg.

Hahsler, M. dan Hornik, K. (2007). New Probabilistic Interest Measures for Association Rules, Intelligent Data Analysis, 11(5), hal. 437–455. Tersedia pada: https://doi.org/10.3233/IDA-2007-11502.

Han, J., Kamber, M. dan Pei, J. (2012). Data Mining: Concepts and Techniques. 3 ed. Elsevier.

He, Q. et al. (2018). The Impact of Urban Growth Patterns on Urban Vitality in Newly Built-Up Areas Based on An Association Rules Analysis Using Geographical ‘Big Data’, Land Use Policy, 78, hal. 726–738. Tersedia pada: https://doi.org/10.1016/j.landusepol.2018.07.020.

Hermawan, A. (2017). Gambaran Pilihan Persalinan Oleh Tenaga Non Kesehatan/Tanpa Pertolongan di Indonesia, Jurnal Kesehatan Reproduksi, 8(1).

Kemendes PDTT (2015). Perencanaan Pembangunan Desa. 1 ed. Jakarta: Kementerian Desa, Pembangunan Daerah Tertinggal, dan Transmigrasi Republik Indonesia.

Kemenkes (2021) Profil Kesehatan Indonesia Tahun 2020. Jakarta: Kementerian Kesehatan Republik Indonesia.

KemenPUPR (2022). Kemantapan Jalan Nasional. Tersedia pada: https://data.pu.go.id/dataset/kemantapan-jalan-nasional (Diakses: 9 Juli 2022).

Ledolter, J. (2013). Data Mining and Business Analytics with R. Hoboken, NJ, USA: John Wiley & Sons, Inc. Tersedia pada: https://doi.org/10.1002/9781118596289.

Liu, G., Zhang, H. dan Wong, L. (2011). Controlling False Positives in Asssociation Rule Mining, Proceedings of the VLDB Endowment, 5(2), hal. 145–156. Tersedia pada: https://doi.org/10.14778/2078324.2078330.

Maheen, H., Hoban, E. dan Bennett, C. (2021). Factors Affecting Rural Women’s Utilisation of Continuum of Care Services in Remote or Isolated villages or Pakistan – A Mixed-Methods Study, Women and Birth, 34(3), hal. 257–265. Tersedia pada: https://doi.org/10.1016/j.wombi.2020.04.001.

Murshed, S.M. (2002). Conflict, Civil War and Underdevelopment: An Introduction, Journal of Peace Research, 39(4), hal. 387–393. Tersedia pada: https://doi.org/10.1177/0022343302039004001.

Nain, U. (2019). Pembangunan Desa dalam Perspektif Sosiohistoris. Makassar: Garis Khatulistiwa.

Respati, S.H., Sulistyowati, S. dan Nababan, R. (2019). Analisis Faktor Determinan Kematian Ibu di Kabupaten Sukoharjo Jawa Tengah Indonesia, Jurnal Kesehatan Reproduksi, 6(2), hal. 52. Tersedia pada: https://doi.org/10.22146/jkr.43463.

Shamdasani, Y. (2021). Rural Road Infrastructure & Agricultural Production: Evidence from India, Journal of Development Economics, 152, hal. 102686. Tersedia pada: https://doi.org/10.1016/j.jdeveco.2021.102686.

Solanki, S.K. dan Patel, J.T. (2015). A Survey on Association Rule Mining, in 2015 Fifth International Conference on Advanced Computing & Communication Technologies. IEEE, hal. 212–216. Tersedia pada: https://doi.org/10.1109/ACCT.2015.69.

Soseco, T. (2015). Mendorong Sektor Pendidikan di Perdesaan, Jurnal Ekonomi dan Studi Pembangunan, 7(2), hal. 1–8.

Sutiyo dan Maharjan, K.L. (2017). Decentralization and Rural Development in Indonesia. Singapore: Springer Singapore. Tersedia pada: https://doi.org/10.1007/978-981-10-3208-0.

Syahza, A. dan Suarman, S. (2013). Strategi Pengembangan Daerah Tertinggal dalam Upaya Percepatan Pembangunan Ekonomi Pedesaan, Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi dan Pembangunan, 14(1), hal. 126. Tersedia pada: https://doi.org/10.23917/jep.v14i1.166.

Todaro, M.P. dan Smith, S.C. (2011). Pembangunan Ekonomi. 11 ed. Diedit oleh A. Maulana dan N.I. Sallama. Jakarta: Penerbit Erlangga.

World Economic Forum (2018). The Inclusive Development Index 2018. Geneva.

Yanuarti, S. (2012). Kemiskinan dan Konflik Papua di Tengah Sumber Daya yang Melimpah, Jurnal Penelitian Politik, 9(1).

Yulitasari, Y. dan Tyas, W.P. (2020). Dana Desa dan Status Desa di Provinsi Jawa Tengah, Journal of Regional and Rural Development Planning, 4(2), hal. 74–83. Tersedia pada: https://doi.org/10.29244/jp2wd.2020.4.2.74-83.

Zhang, S. et al. (2008). Computing the Minimum-Support for Mining Frequent Patterns, Knowledge and Information Systems, 15(2), hal. 233–257. Tersedia pada: https://doi.org/10.1007/s10115-007-0081-7.

Downloads

Published

2024-05-29

Issue

Section

Articles