https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Efek Besaran Simpangan Baku Sampel terhadap Nilai Residu dalam Analisis Regresi Berganda Tiga Variabel Bebas

Authors

  • Ikhsanudin Universitas Sultan Ageng Tirtayasa
  • Edi Istiyono Universitas Negeri Yogyakarta, Indonesia
  • Syaiful Syamsuddin Institut Agama Islam Negeri Curup, Indonesia

DOI:

https://doi.org/10.29313/statistika.v23i2.1661

Keywords:

analisis data, nilai residu, regresi berganda, simpangan baku sampel, Data Analysis, Multiple Regression, Residual Value, Standard Deviation of Sample

Abstract

ABSTRACT

Multiple regression is a statistical data analysis technique that is often used to find models of relationships between variables. Regression analysis can explain causal relationships, where the value of the independent variable predicts the value of the dependent variable. This research aims to describe the effect of the sample standard deviation to the residual value in multiple regression analysis for three independent variables and one dependent variable. This research is descriptive research using simulation data of 110 respondents. Variations in standard deviation values ​​are obtained from increasing the observed scores on the variables. The variation of standard deviation in this study are calculated from observed scores that increase by the same multiple. Next, the regression residual values ​​were analyzed using the SPSS program. The results of the analysis show that there is an influence of the standard deviation value of sample on the residual value. When the sample standard deviation value increases A times, the residual value also becomes A times larger. This indicates that the greater the variation in the data, the greater the residual value in regression analysis. In multiple regression of three independent variables on one dependent variable, the effect of the deviation value in the sample which changes the residual value only applies to the dependent variable, changes in the standard deviation of the independent variable do not affect the residual value. The conclusion of this research is a simple description so further studies are needed specifically.

ABSTRAK

Regresi berganda merupakan salah satu teknik analisis data statistik yang sering digunakan untuk mencari model hubungan antar variabel. Analisis regresi dapat menjelaskan hubungan sebab-akibat, dimana nilai variabel bebas memprediksi nilai variabel terikat. Penelitian ini bertujuan untuk mendeskripsikan keterkaitan antara besaran simpangan baku sampel terhadap nilai residu pada analisis model regresi berganda untuk tiga variabel bebas dengan satu variabel terikat. Penelitian ini merupakan penelitian deskriptif dengan menggunakan data simulasi. Sampel simulasi sebanyak 110 responden. Variasi nilai simpangan baku diperoleh dari memperbesar skor amatan pada variabel yang dianalisis regresi dengan kelipatan tertentu. Oleh karena itu, batasan simpangan baku dalam penelitian ini dihitung dari skor-skor amatan yang bertambah besar dengan kelipatan sama. Selanjutnya, nilai residu regresi dianalisis menggunakan program SPSS. Hasil analisis menunjukkan bahwa ada pengaruh besaran simpangan baku sampel terhadap nilai residu. Ketika nilai simpangan baku sampel bertambah besar A kali maka nilai residu juga semakin besar A kali pula. Hal ini mengindikasikan bahwa semakin besar variasi data maka semakin besar pula nilai residu dalam analisis regresi. Pada regresi berganda tiga variabel bebas terhadap satu variabel terikat, efek besaran nilai simpangan pada sampel yang mengubah besaran nilai residu hanya berlaku pada variabel terikat saja, perubahan simpangan baku pada variabel bebas tidak mempengaruhi besaran nilai residu. Kesimpulan penelitian ini merupakan deskripsi sederhana sehingga diperlukan kajian lebih lanjut secara khusus memperdalam bahasan pada topik yang sama.

References

Akbilgic, O. (2015). Classification trees aided mixed regression model. Journal of Applied Statistics, 42(8), 1773-1781.

Anghelache, C., Anghel, M. G., & Popovici, M. (2015). Multiple Regressions Used in Analysis of Private Consumption and Public Final Consumption Evolution. International Journal of Academic Research in Accounting, Finance and Management Sciences, 5, 69-73.

Draper, N.R., & Smith, H. (1998). Applied Regression Analysis. New York: JOHN WILEY & SONS, INC.

Ernst, A. F., & Albers, C. J. (2017). Regression assumptions in clinical psychology research practice—a systematic review of common misconceptions. PeerJ, 5, e3323.

Espinheira, P. L., & de Oliveira Silva, A. (2020). Residual and influence analysis to a general class of simplex regression. Test, 29(2), 523-552.

Fechete, F., & Nedelcu, A. (2014). Analysis of the economic performance of a organization using multiple regression. Scientific Research & Education in the Air Force-AFASES, 2.

Figueroa, L. L., Lim, S., & Lee, J. (2016). Investigating the relationship between school facilities and academic achievements through geographically weighted regression. Annals of GIS, 22(4), 273-285.

Hung, L. F., & Huang, C. M. (2011). Effect of the number of categories, number of time-points, and sample size on the recovery of random-effect ordinal regression model parameters. Journal of Statistics and Management Systems, 14(6), 1175-1198.

Jackson, A. B. (2022). Residuals from two‐step research designs. Accounting & Finance, 62(4), 4345-4358.

Jemna, J.H., Lasisi, K.E., Akpan, E.A., Abdullahi, A.G., & Henry, A.S. (2020). Improving the Performance of Linear Regression Model: A Residual Analysis Approach. Global Scientific Journal, 8(10), 212-222.

Korkmaz, M., Güney, S., & Yiğiter, Ş. Y. (2012). The importance of logistic regression implementations in the Turkish livestock sector and logistic regression implementations/fields. Harran Tarim Ve Gida Bilimleri Dergisi, 16(2), 25-36.

Larsen, W. A., & McCleary, S. J. (1972). The use of partial residual plots in regression analysis. Technometrics, 14(3), 781-790.

Lee, S., Lei, M. K., & Brody, G. H. (2015). Constructing Confidence Intervals for Effect Size Measures of an Indirect Effect. Multivariate behavioral research, 50(6), 600-613.

Mansfield, E. R., & Conerly, M. D. (1987). Diagnostic value of residual and partial residual plots. The American Statistician, 41(2), 107-116.

Mudawamah, S. A., Swastika, G. T., Narendra, R., & Qomarudin, M. N. H. (2022). Pemodelan Regresi Semiparametrik dengan Pendekatan Spline Truncated pada Indeks Pembangunan Manusia (IPM) di Jawa Timur. Statistika, 22(2), 183-194.

Rispoli, F. J., & Shah, V. (2015). Using Simulation to Test the Reliability of Regression Models. Energy and Environment Research, 5(1), 75-81.

Syla, S. (2018). Statistical Analysis of Foreign Investments in the Republic of Macedonia 2010-2016. Advances in Social Sciences Research Journal, 5(5) 18-23.

Vatcheva, K. P., Lee, M., McCormick, J. B., & Rahbar, M. H. (2016). Multicollinearity in regression analyses conducted in epidemiologic studies. Epidemiology (Sunnyvale, Calif.), 6(2) 227.

Verbeek, M. (2017). Using linear regression to establish empirical relationships. IZA World of Labor.

Wampold, B. E., & Freund, R. D. (1987). Use of multiple regression in counseling psychology research: A flexible data-analytic strategy. Journal of Counseling Psychology, 34(4), 372.

Widhiarso, W.. (2001). Menghitung Sumbangan Efektif Tiap Aspek terhadap Variabel Dependen. Yogyakarta: Fakultas Psikologi UGM.

Wilcox, R. R., & Tian, T. S. (2011). Measuring effect size: a robust heteroscedastic approach for two or more groups. Journal of Applied Statistics, 38(7), 1359-1368.

Williams, M. N., Grajales, C. A. G., & Kurkiewicz, D. (2013). Assumptions of multiple regression: correcting two misconceptions. Practical Assessment, Research & Evaluation, 18 (11).

Withers, C. S., & Nadarajah, S. (2007). Linear Regression with Extreme Value Residuals. Communications in Statistics-Simulation and Computation, 37(1), 73-91.

Xu, X., Meng, X. L., & Yu, Y. (2013). Thank God That Regressing Y on X is Not the Same as Regressing X on Y: Direct and Indirect Residual Augmentations. Journal of Computational and Graphical Statistics, 22(3), 598-622.

Zeebari, Z., Kibria, B. G., & Shukur, G. (2017). Seemingly unrelated regressions with covariance matrix of cross-equation ridge regression residuals. Communications in Statistics-Theory and Methods, 1-25.

Downloads

Published

2023-11-21

Issue

Section

Articles