https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Perbandingan Metode Single Moving Average dan Single Exponential Smoothing dalam Peramalan Jumlah Pengguna Pospay pada PT Pos Indonesia KCU Bandung

Authors

  • Septiany Putri Program Studi Matematika, FMIPA, Universitas Islam Bandung
  • Farid Badruzzaman Program Studi Manajemen, Universitas Teknologi Digital Bandung
  • Erwin Harahap Program Studi Matematika, FMIPA, Universitas Islam Bandung

Keywords:

Pospay, Single Moving Average, Single Exponential Smoothing

Abstract

Abstrak. Perkembangan fintech yang hadir di Indonesia memunculkan berbagai inovasi aplikasi khususnya di bidang jasa keuangan. Dengan adanya fintech, masyarakat sudah bisa melakukan transaksi keuangan di tempat dengan menggunakan smartphone atau teknologi internet lainnya. Pos Payment (Pospay) adalah salah satu jenis layanan yang berhubungan dengan layanan keuangan yang diluncurkan oleh PT Pos Indonesia. Peramalan jumlah pengguna aplikasi Pospay sangat penting, karena peramalan dapat menjadi dasar untuk meningkatkan layanan yang dilihat dari sejauh mana proses berjalan di layanan tersebut sehingga nantinya dapat dilakukan evaluasi. Tujuan penelitian ini yaitu untuk meramalkan jumlah pengguna Pospay menggunakan metode Single Moving Average dan Single Exponential Smoothing. Hasil peramalan jumlah pengguna Pospay menggunakan metode Single Exponential Smoothing dengan alpha 0,9 memiliki nilai MAPE yang tingkat keakuratannya tinggi yaitu 8,77% dan hasil peramalan jumlah pengguna Pospay pada minggu ke-31 yaitu sebesar 398 pengguna Pospay.

Kata kunci: Pospay, Single Moving Average, Single Exponential Smoothing

Abstract. The development of fintech that is present in Indonesia has led to various application innovations, especially in the field of financial services. With the existence of fintech, people can already carry out financial transactions on the spot using a smartphone or other internet technology. Pos Payment (Pospay) is one type of service related to financial services launched by PT Pos Indonesia. Forecasting the number of users of the Pospay application is very important, because forecasting can be the basis for improving services based on the extent to which the process runs on the service so that later evaluation can be carried out. The purpose of this study is to predict the number of Pospay users using the Single Moving Average and Single Exponential Smoothing methods. The results of forecasting the number of Pospay users using the Single Exponential Smoothing method with an alpha of 0.9 have a MAPE value with a high accuracy rate of 8.77% and the results of forecasting the number of Pospay users in the 31st week of 398 Pospay users.

Keywords: Pospay, Single Moving Average, Single Exponential Smoothing

Downloads

Published

2023-05-31