Pengaruh Geometri Dan Penggunaan bahan Peledak Di kuari Batu Andesit Terhadap Jarak Flyrock
Studi Kasus Pada Infrastruktur Kereta Cepat Jalur Jakarta-Bandung Purwakarta
DOI:
https://doi.org/10.29313/jrtp.v4i2.5278Keywords:
Powder Factor, Stemming, KCICAbstract
Abstrak. Panghegar berada dekat dengan infrastruktur kereta cepat jalur Jakarta-Bandung dengan jarak sekitar ± 80 m. Infrastruktur dari kereta cepat tersebut merupakan obyek vital nasional yang menyangkut hajat hidup orang banyak, kepentingan negara dan sumber pendapatan negara yang bersifat strategis. Oleh karena itu dari infrastruktur Kereta Cepat Jalur Jakarta-Bandung tersebut harus dijaga kondisinya dari adanya gangguan dari luar termasuk aktivitas penambangan yang berada dekat dengan jalur kereta tersebut. Untuk menjaga kondisi objek vital nasional Kereta Cepat Jakarta-Bandung, perlu dilakukan kajian akibat dampak negatif peledakan (flyrock). Sehingga dari penelitian ini ditujukan untuk mengetahui jarak lemparan terjauh, geometri yang berpengaruh terhadap lemparan flyrock dan prediksi lemparan flyrock dari peledakan yang dilakukan. Untuk mengetahui hasil tersebut digunakan pendekatan dengan analisis regresi dan korelasi serta menggunakan beberapa prediksi empiris. Dari penelitian ini dapat dilihat bahwa parameter yang paling berpengaruh terhadap jarak lemparan flyrock yaitu powder factor dengan nilai koefisien korelasi sebesar 0,943 dan stemming dengan nilai koefisien korelasi sebesar -0,9. Prediksi empiris yang dapat digunakan pada CV Panghegar yaitu oleh Shakeri, 2022 dengan hasil standar deviasi 5,57 mendekati hasil lemparan aktual flyrock. Dengan demikian dampak negatif kegiatan peledakan (flyrock) tidak berpengaruh atau menganggu infrastruktur jalur kereta cepat. Abstract. CV Panghegar is located approximately ±80 meters from the Jakarta-Bandung High-Speed Train Line, a vital national infrastructure critical to public welfare, state interests, and revenue. To ensure the safety of this infrastructure from potential impacts of nearby mining activities, particularly blasting, a study was conducted to assess the maximum flyrock throw distance, geometric factors influencing flyrock behavior, and predictive methods for flyrock throws. The study utilized regression and correlation analysis, revealing that powder factor (correlation coefficient 0.943) and stemming (correlation coefficient -0.9) are the most influential parameters affecting flyrock throw distance. Among various empirical models, the Shakeri (2022) method was identified as the most accurate for application in CV Panghegar, with a standard deviation of 5.57 closely matching observed flyrock data. The results confirm that the negative impacts of blasting activities, specifically flyrock, do not pose a threat to or interfere with the Jakarta-Bandung High-Speed Train Line infrastructure, thereby ensuring its safety and operational stability.References
Chen, Y., Wang, M., Yin, H., & Zhang, T. (2023). Prediction Of Flyrock Distance Induced By Blasting Using Particle Swarm Optimization And Multiple Regression Analysis: An Engineering Perspective. Acta Geophysica, 66. Https://Doi.Org/10.1007/S11600-023-01247-6
Dehghani, H. (2017). Prediction Of Blast-Induced Flyrock Using Differential Evolution Algorithm. Engineering With Computers, 33(1), 149–158. Https://Doi.Org/10.1007/S00366-016-0461-2
Desy Mahda, & Yuliadi. (2022). Analisis Pengaruh Getaran Peledakan Terhadap Kestabilan Lereng Pada PT. XYZ Blok Paniisan. Jurnal Riset Teknik Pertambangan, 125–132. Https://Doi.Org/10.29313/Jrtp.V2i2.1317
Ghasemi, E., Sari, M., & Ataei, M. (2012). Development Of An Empirical Model For Predicting The Effects Of Controllable Blasting Parameters On Flyrock Distance In Surface Mines. International Journal Of Rock Mechanics And Mining Sciences, 52, 163–170. Https://Doi.Org/10.1016/J.Ijrmms.2012.03.011
Hamdan, D. F., Yuliadi, & Zaenal. (2023). Optimasi Explosive Charge Per Delay Untuk Mengontrol Getaran Tanah Pada Peledakan Tambang Semen. Jurnal Riset Teknik Pertambangan, 63–70. Https://Doi.Org/10.29313/Jrtp.V3i1.2141
Hasanipanah, M., Shirani, R., Danial, F., & Armaghani, J. (2017). Development Of A Precise Model For Prediction Of Blast-Induced Flyrock Using Regression Tree Technique. Environmental Earth Sciences. Https://Doi.Org/10.1007/S12665-016-6335-5
Ibrahim, M. I., Yuliadi, & Wijaksana, I. K. (2021). Analisis Kestabilan Terowongan Akibat Getaran Peledakan Pada Konstruksi Development Terowongan #4 Kereta Cepat Indonesia China (KCIC) Di Desa Sukajaya Dan Desa Malangnengah, Kecamatan Sukatani, Kabupaten Purwakarta, Provinsi Jawa Barat. Jurnal Riset Teknik Pertambangan, 1(1), 71–81. Https://Doi.Org/10.29313/Jrtp.V1i1.230
Jamei, M., Hasanipanah, M., Karbasi, M., Ahmadianfar, I., & Taherifar, S. (2021). Prediction Of Flyrock Induced By Mine Blasting Using A Novel Kernel-Based Extreme Learning Machine. Journal Of Rock Mechanics And Geotechnical Engineering, 13(6), 1438–1451. Https://Doi.Org/10.1016/J.Jrmge.2021.07.007
Krispian Fathan Hidayatullah, Iswandaru, & Zaenal. (2022). Kestabilan Lereng Tambang Terbuka Pada Tambang Emas Di PT X Kecamatan Simpenan, Kabupaten Sukabumi, Provinsi Jawa Barat. Jurnal Riset Teknik Pertambangan, 1(2), 155–161. Https://Doi.Org/10.29313/Jrtp.V1i2.539
Muhammad Sundayana, Yuliadi, & Indra Karna Wijaksana. (2022). Analisis Hubungan Kerapatan Kekar Dengan Tingkat Getaran Tanah Hasil Peledakan. Jurnal Riset Teknik Pertambangan, 133–140. Https://Doi.Org/10.29313/Jrtp.V2i2.1411
Putri, H. A., Yuliadi, & Marmer, D. (2017). Analisis Arah Dan Jarak Lemparan Fly Rock Akibat Kegiatan Peledakan Di PT Dahana Jobsite PT Adaro Indonesia , Kabupaten Tabalong , Provinsi Kalimantan Selatan The Analysis Of The Flying Rock ’ S Direction And Distance Due To Blasting Activities At. Prosiding Teknik Pertambangan, 3(2), 610–619.
Raina, A. K. (2023). Flyrock In Surface Mining. In Flyrock In Surface Mining. Https://Doi.Org/10.1201/9781003327653
Salsabiela, A., Yuliadi, & Moralista, E. (2021). Identifikasi Karakteristik Peluruhan Hasil Peledakan Andesit Berdasarkan Beberapa Prediktor Pada Tunnel #4 Kereta Cepat Indonesia China Di Kecamatan Sukatani, Kabupaten Purwakarta, Provinsi Jawa Barat. Jurnal Riset Teknik Pertambangan, 1(1), 62–70. Https://Doi.Org/10.29313/Jrtp.V1i1.144
Shakeri, J. (2022). Developing New Models For Flyrock Distance Assessment In Open-Pit Mines. Journal Of Mining And Environment, 13(2), 377–391. Https://Doi.Org/10.22044/Jme.2022.11805.2170
Shakeri, J., Khoshalan, H. A., Dehghani, H., Bascompta, M., & Onyelowe, K. (2022). Developing New Models For Flyrock Distance Assessment In Open-Pit Mines. Journal Of Mining And Environment, 13(2), 377–391. Https://Doi.Org/10.22044/Jme.2022.11805.2170
Sharma, S. K., & Rai, P. (2015). Investigation Of Crushed Aggregate As Stemming Material In Bench Blasting: A Case Study. Geotechnical And Geological Engineering, 33(6), 1449–1463. Https://Doi.Org/10.1007/S10706-015-9911-7
Siti Nurul Khotimah, & Sri Widayati. (2022). Rencana Teknis Dan Ekonomis Reklamasi Tambang Di PT. X Baleendah. Jurnal Riset Teknik Pertambangan, 65–74. Https://Doi.Org/10.29313/Jrtp.V2i1.1000
Stojadinović, S. (2016). Prediction Of Flyrock Launch Velocity Using Artificial Neural Networks. Neural Computing And Applications, 27(2), 515–524. Https://Doi.Org/10.1007/S00521-015-1872-5
Zhou, J. (2020). A Monte Carlo Simulation Approach For Effective Assessment Of Flyrock Based On Intelligent System Of Neural Network. Engineering With Computers, 36(2), 713–723. Https://Doi.Org/10.1007/S00366-019-00726-Z
Zhou, J., Aghili, N., Ghaleini, E. N., Bui, D. T., Tahir, M. M., & Koopialipoor, M. (2020). A Monte Carlo Simulation Approach For Effective Assessment Of Flyrock Based On Intelligent System Of Neural Network. Engineering With Computers, 36(2), 713–723. Https://Doi.Org/10.1007/S00366-019-00726-Z