https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Forecasting Moving Average dan Exponential Smoothing di Usaha Erina, Payakumbuh

Authors

  • Winny Alna Marlina Universitas Andalas

DOI:

https://doi.org/10.29313/jrti.v4i2.4752

Keywords:

Forecasting, weighted moving average, Exponential Smoothing

Abstract

Abstrak. Erina adalah salah satu UMKM yang menghasilkan Gelamai. Umkm ini menghadapi masalah permintaan karena mereka tidak tahu bagaimana permintaan konsumen berubah setiap saat, yang berdampak pada stok bahan baku dan membutuhkan perencanaan yang matang untuk mengendalikan bahan baku untuk memenuhi permintaan pasar. Metode peramalan kuantitatif yang digunakan dalam penelitian ini adalah pendekatan weighted moving average (WMA) dan eksponensial. Dengan menggunakan prediksi penjualan gelamai untuk bulan Januari 2024, kami menemukan bahwa penjualan gelamai akan mencapai 7.224,67 gelamai dengan tingkat kesalahan MAD 354,96, MSE 15.4069,3, dan MAPE 0,05. Dengan menggunakan metode rata-rata bergerak dengan pembobotan tiga bulanan, bobot periode sebelumnya akan dibebankan sebesar 0,3, sedangkan bobot untuk dua periode sebelumnya 0,2, dan bobot untuk tiga periode sebelumnya adalah 0,1.

Abstract. Erina is one of the MSMEs that produces gelamai. This MSME faces demand problems because they do not know how consumer demand changes at any time, which impacts their raw material stock and requires careful planning to control raw materials to meet market demand. The quantitative forecasting methods used in this study are the weighted moving average (WMA) and exponential approaches. Using the Gelamai sales prediction for January 2024, we found that Gelamai sales will reach 7,224.67 Gelamai with a MAD error rate of 354.96, MSE of 15.4069.3, and MAPE of 0.05. The three-month weighted moving average method charges the weight of the previous period at 0.3, 0.2 for the previous two periods, and 0.1 for the previous three periods.

References

A. D. Ardianto, Moh. Jufriyanto, and A. W. Rizqi, “Perbandingan Nilai Error Peramalan Permintaan Petis Udang Pada UD. XYZ Menggunakan Metode Regresi Linier dan Weighted Moving Average,” Jurnal Serambi Engineering, vol. 8, no. 3, pp. 6415–6422, 2023, doi: 10.32672/jse.v8i3.6395.

E. Asynari, D. Wahyudi, and Q. Aeni, “Analisis Peramalan Permintaan Pada Geprek Bensu Menggunakan Metode Time Series,” Jurnal Teknologi dan Sistem Informasi, vol. 6, no. 3, pp. 215–220, 2020.

J. N. A. Aziza, “Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services,” Jurnal Teknologi dan Manajemen Industri Terapan, vol. 1, no. I, pp. 35–41, 2022, doi: 10.55826/tmit.v1ii.8.

K. D. Sofyan and S. Meutia, “Peramalan Permintaan Produk Di Pt. Bina Usaha Bersama Sehati Lhokseumawe,” SNTI, pp. 1–9, 2019.

S. Anggraeni and J. Arifin, “Peramalam Permintaan Printing Menggunakan Metode Double Exponential Smoothing dan Pengujian Hasil Menggunakan Grafik Tracking Signal pada PT. XYZ,” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 13, pp. 430–439, 2022.

T. Agustiana and Y. Suhari, “Desain Forecasting Penjualan Pada Erafone Android Nation Paragon Semarang Dengan Metode Moving Average Dan Exponential Smoothing,” Jurnal Dinamika Informatika, vol. 11, no. 2, pp. 79–83, 2020, doi: 10.35315/informatika.v11i2.8154.

B. G. Aji, D. C. A. Sondawa, F. A. Anindika, and D. Januarita, “Analisis Peramalan Obat Menggunakan Metode Simple Moving Average, Weighted Moving Average, Dan Exponential Smoothing,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, p. 959, 2022, doi: 10.30865/jurikom.v9i4.4454.

M. Anshori and D. Widyaningrum, “Peramalan Permintaan Produk Cepat Rusak Dengan Metode Moving Average dan Single Exponential Smoothing,” Jurnal Serambi Engineering, vol. 7, no. 4, pp. 3725–3732, 2022, doi: 10.32672/jse.v7i4.4701.

N. Aprilianti, I. Setiawan, and N. Yusuf, “Peramalan Permintaan Produk Sale Pisang Pada Industri ‘Sahabat’ Di Dusun Cijoho Desa Margajaya Kecamatan Sukadana Kabupaten Ciamis Forecasting Demand for Sale Banana Products in the ‘Sahabat’ Industry in Cijoho Hamlet, Margajaya Village, Sukadana Subdistr,” Jurnal Ilmiah, vol. 7, no. 2009, pp. 634–642, 2020.

A. Nurdini, “Analisis Peramalan Permintaan Tempe Gmo 450 Gram Dengan,” Jurnal Ilmiah Teknik, vol. 1, no. 2, pp. 131–142, 2022.

S. Sari and D. Jannati, “Analisis Perancangan Kebutuhan Kopi Best Seller Untuk Memenuhi Permintaan Di Cafe Kopi Titik Dengan Menggunakan Metode Peramalan,” Bina Teknika, vol. 17, no. 1, p. 9, 2021, doi: 10.54378/bt.v17i1.2729.

B. L. Utamie, Isdiantoni, and T. D. Kurniawan, “Peramalan Permintaan Buah di Kabupaten Sumenep,” Seminar Nasional Optimalisasi Sumberdaya Lokal di Era Revolusi Industri 4.0, pp. 155–166, 2019.

T. Wisudawati, E. Sulistyowati, and W. A. Saputro, “Analisis Peramalan Permintaan Jahe Di Masa Pandemi Covid-19 (Studi Kasus Penjualan Di Karesidenan Surakarta),” Journal of Industrial and Manufacture Engineering, vol. 5, no. 2, pp. 93–99, 2021, doi: 10.31289/jime.v5i2.4904.

Yoga Satya Andriawan and Nur Muflihah, “Analisis Peramalan Permintaan Karton Box Ud Berkah Jaya Offset Menggunakan Metode Time Series,” Jurnal Penelitian Bidang Inovasi & Pengelolaan Industri, vol. 3, no. 1, pp. 23–35, 2023, doi: 10.33752/invantri.v3i1.5004.

M. A. Marlina, Winny Alna, Armijal, Mutia Khairun Nisa, “Analisis Peramalan Box Jenkins Terhadap Penjualan Di Umkm Im Lele, Payakumbuh,” Industri Inovatif : Jurnal Teknik Industri, vol. 13, no. 2, pp. 105–115, 2023, doi: 10.36040/industri.v13i2.6526.

D. A. Ramdani and F. N. Azizah, “Exponential Smoothing Dan Naive Method (Comparative Analysis of XYZ Company Lubricant Demand Forecasting with The Moving Average Method, Exponential Smoothing and Naive Method),” Seminar Nasional Official Statistics, vol. 1, pp. 1000–1010, 2020.

V. Sohrabpour, P. Oghazi, R. Toorajipour, and A. Nazarpour, “Export sales forecasting using artificial intelligence,” Technological Forecasting and Social Change, vol. 163, no. June 2020, p. 120480, 2021, doi: 10.1016/j.techfore.2020.120480.

M. Ngantung, A. H. Jan, A. Peramalan, P. Obat, M. Ngantung, and A. H. Jan, “Analisis Peramalan Permintaan Obat Antibiotik Pada Apotik Edelweis Tatelu,” Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, vol. 7, no. 4, pp. 4859–4867, 2019, doi: 10.35794/emba.v7i4.25439.

J. Fattah, L. Ezzine, Z. Aman, H. El Moussami, and A. Lachhab, “Forecasting of demand using ARIMA model,” International Journal of Engineering Business Management, vol. 10, pp. 1–9, 2018, doi: 10.1177/1847979018808673.

R. M. van Steenbergen and M. R. K. Mes, “Forecasting demand profiles of new products,” Decision Support Systems, vol. 139, no. July, p. 113401, 2020, doi: 10.1016/j.dss.2020.113401.

T. E. Goltsos, A. A. Syntetos, C. H. Glock, and G. Ioannou, “Inventory – forecasting: Mind the gap,” European Journal of Operational Research, vol. 299, no. 2, pp. 397–419, 2022, doi: 10.1016/j.ejor.2021.07.040.

A. A. Fadiya Nadira, Cyndy Kresna Dewy, Sabila Utami Syifa Tiojay, “PENERAPAN METODE FORECASTING DOUBLE MOVING AVERAGE DAN DOUBLE EXPONENTIAL SMOOTHING SATU PARAMETER Jurnal Logistics & Supply Chain ( LOGIC ),” Jurnal Logistics & Supply Chain ( LOGIC ), vol. 02, no. 01, pp. 1–7, 2023.

H. I. Kusuma and R. Saputra, “Analisis Peramalan Permintaan Jaket Inalcafa pada Produk Pria dengan Metode Double Moving Average,” G-Tech: Jurnal Teknologi Terapan, vol. 8, no. 2, pp. 1213–1219, 2024, doi: 10.33379/gtech.v8i2.4222.

F. Gea, S. Zebua, M. S. D. Mendrofa, and P. Harefa, “Analisis Peramalan Permintaan Produk Popok Bayi Merek Merries pada Caritas Market Kota Gunungsitoli,” INNOVATIVE: Journal Of Social Science Research, vol. 4, no. 2, pp. 4117–4130, 2024.

S. P. Khan, S. M. Ayuningtyas, W. Rohmah, Z. Indah, and A. G. Azzahra, “Analisa Perbandingan Nilai Akurasi Exponential Smoothing dan Linier Regresion pada Peramalan Permintaan Part Joint Brake Rod,” Jurnal Serambi Engineering, vol. VIII, no. 1, pp. 4251–4260, 2023.

R. Awanda and K. Oktafianto, “Peramalan Permintaan Paving Menggunakan Metode Weighted Moving Average Dan Exponential Smoothing,” MathVision : Jurnal Matematika, vol. 3, no. 1, pp. 14–18, 2021, doi: 10.55719/mv.v3i1.252.

F. R. Hariri, W. Sari, and C. Mashuri, “Perbandingan metode Double Exponential Smoothing dan Simple Moving Average pada kasus peramalan penjualan,” Jurnal Ilmiah Sistem Informasi, vol. 11, no. 2, pp. 93–100, 2021, doi: 10.26594/teknologi.v11i2.2348.

A. I. Jaya and T. Desyani, “Perancangan aplikasi forecasting penjualan dengan metode moving average dan exponential smoothing berbasis web,” Prosiding Seminar Nasional Informatika dan Sistem Informasi, vol. 4, no. 3, pp. 134–145, 2019.

V. P. Rau, J. S. B. Sumarauw, and M. M. Karuntu, “Analisis Peramalan Permintaan Produk Hollow Brick Pada UD. Immanuel Air Madidi,” Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, vol. 6, no. 3, pp. 1498–1507, 2018.

P. Samuel, F. Lefta, I. Indahsari, and L. Gozali, “Penentuan Metode Peramalan Permintaan Barang Setengah Jadi Di Pt. Xyz,” Jurnal Ilmiah Teknik Industri, vol. 8, no. 1, pp. 7–17, 2020, doi: 10.24912/jitiuntar.v8i1.8066.

M. H. Kurniawan and D. Herwanto, “Penerapan Metode Double Exponential Smoothing dan Moving Average pada Peramalan Permintaan Produk Gasket Cap di PT. Nesinak Industries,” Jurnal Serambi Engineering, vol. 7, no. 1, pp. 2537–2546, 2021, doi: 10.32672/jse.v7i1.3709.

M. A. Puspitasari, R. Arief, I. Teknologi, and A. Tama, “Peramalan Permintaan Produk Travel Pouch Pada CV . Sunflower Menggunakan Metode Single Moving Average,” Seminar Nasional Sains dan Teknologi Terapan, pp. 2–7, 2023.

A. Azeem, I. Ismail, S. M. Jameel, and V. R. Harindran, “Electrical Load Forecasting Models for Different Generation Modalities: A Review,” IEEE Access, vol. 9, pp. 142239–142263, 2021, doi: 10.1109/ACCESS.2021.3120731.

M. A. Hammad, B. Jereb, B. Rosi, and D. Dragan, “Methods and Models for Electric Load Forecasting: A Comprehensive Review,” Logistics & Sustainable Transport, vol. 11, no. 1, pp. 51–76, 2020, doi: 10.2478/jlst-2020-0004.

R. Siddiqui, M. Azmat, S. Ahmed, and S. Kummer, “A hybrid demand forecasting model for greater forecasting accuracy: the case of the pharmaceutical industry,” Supply Chain Forum, vol. 23, no. 2, pp. 124–134, 2022, doi: 10.1080/16258312.2021.1967081.

I. K. Nti, M. Teimeh, O. Nyarko-Boateng, and A. F. Adekoya, “Electricity load forecasting: a systematic review,” Journal of Electrical Systems and Information Technology, vol. 7, no. 1, 2020, doi: 10.1186/s43067-020-00021-8.

H. Qurrota, H. Ardian, and M. K. Nunuh, “Pemilihan Metode Peramalan Jumlah Permintaan Koran dengan Tingkat Kesalahan Terendah,” MATRIK Jurnal Manajemen dan Teknik Industri-Produksi, vol. XXI, no. 2, 2021, doi: 10.350587/Matrik.

Downloads

Published

2024-12-30