https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Prediksi Sisa Umur Bearing Menggunakan Distribusi Weibull

Authors

  • Uun Unaijah Statistika, Universitas Islam Bandung
  • Sutawanir Darwis Statistika, Universitas Islam Bandung

DOI:

https://doi.org/10.29313/jrs.vi.909

Keywords:

Bearing, Waktu Kegagalan, Distribusi Weibull

Abstract

Abstract. The condition of the machine to avoid damage, the machine must always be monitored so that there is no decrease in operating time or unexpected damage to the machine. The condition of the health of the machine can detect, classify and predict future failures, it is very important in reducing operating and maintenance costs. There are several methods to analyze the life of the machine, one of which is the analysis using the Weibull distribution which can be used to estimate reliability, maintenance, and can be used to estimate damage. The data used in this study is secondary data obtained from the Intelligent Maintenance System (IMS), IEEE PHM 2012 through FEMTO-ST Institute storage and the Zhai Journal with the title Analysis of Time-to-Failure Data with Weibull Model in Product Life Cycle Management. Determine Time to Failure by determining the maximum value in each period. The results of data analysis from research conducted on the prediction of the remaining life of the bearing machine, it is found that the Weibull distribution can be used to analyze failure data using the smallest method based on the maximum probability and probability. However, in this case the method using the least squares method is more accurate than the maximum likelihood method.

Abstrak. Pemantauan kondisi mesin untuk menghindari adanya kerusakan, mesin harus selalu dipantau agar tidak terjadi penurunan waktu operasi atau kerusakan pada mesin yang tak terduga. Kondisi dari kesehatan mesin dapat mendeteksi, mengklasifikasikan dan memperkirakan kerusakan yang akan datang, hal tersebut sangat penting dalam mengurangi biaya operasi dan pemeliharaan. Terdapat beberapa metode untuk menganalisis masa pakai mesin salah satunya analisis dengan menggunakan distribusi Weibull yang dapat digunakan untuk memperkirakan tentang persoalaan reliability, mantainability dan dapat digunakan untuk memperkirakan kerusakan bearing. Data yang digunakan pada  penelitian ini adalah data sekunder yang diperoleh dari Intelligent Maintenance System (IMS), IEEE PHM 2012 melalui penyimpanan FEMTO-ST Institute dan Jurnal Zhai dengan judul Analysis of Time-to-Failure Data with Weibull Model in Product Life Cycle Management. Penentuan Time to Failure yaitu dengan menentukan nilai maksimum dalam setiap periode. Berdasarkan hasil analisis data dari penelitian yang dilakukan tentang prediksi sisa umur mesin bearing maka didapatkan bahwa distribusi Weibull dapat digunakan untuk menganalisis data waktu kegagalan dengan menggunakan estimasi metode kuadrat terkecil dan maksimum likelihood. Namun dalam hal ini metode dengan menggunakan metode kuadrat terkecil lebih akurat dibandingkan metode maksimum likelihood.

Downloads

Published

2022-07-10