https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Robust Spatial Durbin Model (RSDM) untuk Pemodelan Tingkat Pengangguran Terbuka (TPT) di Provinsi Jawa Barat

Authors

  • Hanna Nurul Khofifah Statistika, Universitas Islam Bandung

DOI:

https://doi.org/10.29313/jrs.v1i2.522

Keywords:

Estimasi Maximum Likelihood type, Robust Spatial Durbin Model, Spatial Durbin Model, Regresi Spasial, Pencilan

Abstract

Abstract. Spatial regression is used to determine the relationship between the response variable and predictor variables that have a spatial influence in it. If the response variables and predictor variables have a spatial effect, then the model formed is the Spatial Durbin Model (SDM). Outliers in spatial data are often found when conducting the research. Robust Regression is generally used to overcome outliers. Robust regression used in spatial data is a combination of the SDM methods and Robust regression, thus it form a method called Robust Spatial Durbin Model (RSDM). The estimation method used is the Maximum Likelihood type estimation (M-estimator), with expectation that it could accomodate the existence of outliers in the spatial regression model. In this study the response variable is the Open Unemployment Rate, and the predictor variable is the Human Development Indeks, District/City Minimum Wage, Dependency Ratio. Labor Force Participation Rate, education level, and number of poor population. From the results of the study the value Adjusted R2 0,9850 which means 98,5% TPT is influenced by the variables in the model. It means that RSDM is a good model to explain TPT in West Java Province.

Abstrak. Regresi spasial digunakan untuk mengetahui hubungan antara variabel respon dan variabel prediktor yang memiliki pengaruh spasial di dalamnya. Jika dalam variabel respon dan variabel prediktor mempunyai pengaruh spasial, maka model yang dibentuk yaitu Spatial Durbin Model (SDM). Pencilan pada data spasial sering ditemukan ketika melakukan penelitian. Secara umum metode yang dapat digunakan untuk mengatasi pencilan yaitu regresi robust. Regresi robust yang digunakan pada data spasial merupakan kombinasi dari metode SDM dan Regresi robust sehingga membentuk suatu metode yang disebut Robust Spatial Durbin Model (RSDM). Metode estimasi yang digunakan yaitu estimasi Maximum Likelihood type (M-estimator), dengan harapan dapat mengakomodasi keberadaan pencilan dalam model regresi spasial. Pada penelitian ini variabel respon adalah Tingkat Pengangguran Terbuka (TPT) dan variabel prediktor adalah Indeks Pembangunan Manusia (IPM), Upah Minimum Kabupaten/Kota (UMK), Rasio Ketergantungan, Tingkat Partisipasi Angkatan Kerja (TPAK), Tingkat Pendidikan, dan Jumlah Penduduk Miskin. Dari hasil penelitian diperoleh nilai Adjusted R2 sebesar 0,9850 yaitu 98,5% TPT dipengaruhi variabel yang ada didalam model. Hal ini menunjukkan RSDM merupakan model yang baik untuk menjelaskan TPT di Provinsi Jawa Barat.

Downloads

Published

2022-02-13