https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Diagram Kendali Adaptive Exponentially Weighted Moving Average Bayesian dalam Pengendalian Penyaluran Air Minum

Authors

  • Muhammad Farhan Praja Utama Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung
  • Teti Sofia Yanti Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung

DOI:

https://doi.org/10.29313/jrs.v4i2.5014

Keywords:

Air Minum, Bayesian, Diagram Kendali AEWMA

Abstract

Abstract. Process control is one of the statistical methods in maintaining product quality. One of the process control methods used in statistical quality control is a control diagram, which is a diagram used to describe the condition of an observation in a certain period of time, whose observation value is limited by the upper control limit (BKA) and lower control limit (BKB) to control the observation. Drinking water is one of the main needs needed by the community. In an effort to fulfill the community's need for drinking water availability, appropriate steps are needed in an effort to control the drinking water distribution process at drinking water companies so that the distribution process becomes more effective. This research was conducted to see the drinking water distribution process at PT.X as a step to control the distribution process. Researchers use the Adaptive Exponentially Weighted Moving Average (AEWMA) control chart by utilizing the Bayesian theorem so that the threshold value of the Bayes confidence interval derived from the posterior distribution is obtained. The results obtained that the AEWMA control chart is quite effective in providing an overview of the movement of the
process by showing values that are in control and values that are out of control.

Abstrak. Pengendalian proses merupakan salah satu metode statistik dalam menjaga kualitas produk. Salah satu metode pengendalian proses yang digunakan dalam pengendalian kualitas statistik adalah diagram kendali, yaitu diagram yang digunakan untuk menggambarkan kondisi suatu pengamatan dalam periode waktu tertentu, yang nilai pengamatannya dibatasi oleh batas kendali atas (BKA) dan batas kendali bawah (BKB) untuk mengendalikan pengamatan. Air minum merupakan salah satu kebutuhan utama yang dibutuhkan oleh masyarakat. Dalam upaya pemenuhan kebutuhan masyarakat akan ketersediaan air minum diperlukan langkah yang tepat dalam upaya pengendalian proses penyaluran air minum pada perusahaan air minum agar proses penyaluran menjadi lebih efektif. Penelitian ini dilakukan untuk melihat proses penyaluran air minum di PT.X sebagai langkah pengendalian proses penyalurannya tersebut. Peneliti menggunakan diagram kendali Adaptive Exponentially Weighted Moving Average (AEWMA) dengan memanfaatkan teorema bayesian sehingga diperoleh nilai threshold dari interval kepercayaan bayes yang berasal dari distribusi posterior. Adapun hasil yang diperoleh bahwa diagram kendali AEWMA cukup efektif dalam memberikan gambaran pergerakan proses dengan menunjukan nilai-nilai yang berada dalam kendali dan nilai yang out of control.

References

U. Ramdhana, Analisis Kapabilitas Proses Produksi Baut Jenis Tapping Screw JF (TSJF) Pada Proses Drat Di PT. AJBS Surabaya. Institut Teknologi Sepuluh Nopember, 2018.

S. Assauri, Manajemen Produksi dan Operasi. Jakarta, 2004.

Nelwati, H. Yozza, and Maiyastri, “Peta Kendali Exponentially Weighted Moving Average (EWMA) Untuk Jumlah Wisatawan Yang Berkunjung Ke Sumatera Barat,” Jurnal Matematika UNAND, vol. 4, no. 4, pp. 83–90, 2019.

I. Khan, M. Noor-ul-Amin, D. M. Khan, S. A. AlQahtani, and W. Sumelka, “Adaptive EWMA control chart using Bayesian approach under ranked set sampling schemes with application to Hard Bake process,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-36469-7.

T. Joko, Unit Produksi dalam Sistem Penyediaan Air Minum. Yogyakarta: Graha Ilmu, 2010.

R. Permana, Suwanda, and S. Sunendiari, “Penerapan Diagram Kendali Sintetik untuk mendeteksi Pergeseran ( Kasus pada PT. World Yamater Spinning Milis II ),” Prosiding Statistika, pp. 18–25, 2017.

R. Hidayat, Analisis Peta Kendali p Menggunakan Pendekatan Bayesian. 2016.

Riani Shifa Rahmadani and Suliadi, “Faktor Koreksi Diagram Kendali Shewhart pada Situasi Unconditional ARL dan Penerapannya terhadap Data Brix (Kekentalan) Saus,” Jurnal Riset Statistika, vol. 1, no. 1, pp. 28–34, Jul. 2021, doi: 10.29313/jrs.v1i1.23.

E. N. R. Firmansyah and Suwanda, “Diagram Kendali Multivariate Exponentially Weighted Moving Variance pada Produksi Kertas Koran,” Jurnal Riset Statistika, pp. 1–10, Jul. 2024, doi: 10.29313/jrs.v4i1.3834.

D. Montgomery, Introduction to Statistical Quality Control. John Wiley & Sons, inc, 2013.

A. Kurniawan, “Pemilihan Produk Asuransi Berdasarkan Profil Nasabah Menggunakan Klasifikasi Naïve Bayes,” 2019.

A. K. Mutaqin, “Distribusi Invers Gaussian Sebagai Salah Satu Distribusi Kegagalan,” Statistika, vol. 1, no. 1, 2001.

A. K. Mutaqin, “Penurunan Fungsi Distribusi Kumulatif dari Distribusi Invers Gaussian,” Statistika, vol. 4, no. 1, 2004.

Zakiyatis Salmaini and Suliadi, “SPC (Statistical Process Control) Fase II Diagram Kendali Cusum (Cumulative Sum) Nonparametrik Berdasarkan Statistik Mann-Whitney Pada Data Harga Saham PT NO,” Jurnal Riset Statistika, vol. 1, no. 2, pp. 83–91, Dec. 2021, doi: 10.29313/jrs.v1i2.404.

V. Mutiarani, “Estimasi Parameter dan Interval Kredibel dalam Model Regresi Linier Bayesian,” 2013.

A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin, Bayesian Data Analysis Third Edition, 3rd ed. 2014.

Downloads

Published

2024-12-31