Pemodelan ARFIMA dengan Estimasi Parameter Pembeda Menggunakan Metode Geweke Porter-Hudak
DOI:
https://doi.org/10.29313/jrs.v4i1.3835Keywords:
ARFIMA, Jangka Panjang, Volume Impor MigasAbstract
Abstract. Forecasting is an analysis related to the use of historical data to find relationships, trends, and structured data patterns. The commonly used forecasting method is ARIMA. The ARIMA model can only explain time series data with short-term memory. The ARFIMA model has been developed from the ARIMA model, offering the advantage of explaining both short-term and long-term time series, with differencing values being real numbers. This study aims to model using the Autoregressive Fractionally Integrated Moving Average (ARFIMA) method, estimating the differencing parameters used, namely Geweke and Porter-Hudak (GPH). The data used in this study was the volume of oil and gas imports from 2012 to 2023. Based on the research, it was concluded that the model chosen for forecasting the volume of oil and gas imports was ARFIMA (0;0.421;1) with an AIC value of 1795,294.
Abstrak. Peramalan adalah analisis yang berkaitan dengan penggunaan data historis untuk menemukan hubungan, kecenderungan, dan pola data yang terstruktur. Metode peramalan yang umum digunakan yaitu ARIMA, Model ARIMA hanya dapat menjelaskan data deret waktu dengan memori jangka pendek. Model ARFIMA merupakan pengembangan dari model ARIMA yang memiliki kelebihan dapat menjelaskan deret waktu jangka pendek (short memory) maupun jangka panjang (long memory), dengan nilai differencing merupakan bilangan riil. Penelitian ini bertujuan untuk memodelkan menggunakan metode Autoregressive Fractionally Integrated Moving Average (ARFIMA), dengan estimasi parameter pembeda yang digunakan yaitu Geweke dan Porter-Hudak (GPH). Data yang digunakan dalam penelitian ini adalah Volume Impor Migas pada tahun 2012 hingga 2023. Berdasarkan penelitian yang telah dilakukan dapat disimpulkan bahwa model yang terpilih untuk peramalan volume impor migas, yaitu ARFIMA (0;0,421;1) dengan nilai AIC sebesar 1795,294.
References
M. I. Wiladibrata and N. A. K. Rifai, “Peramalan Produksi Mobil Menggunakan Metode Double Exponential Smoothing dengan Algoritma Golden Section,” Bandung Conference Series: Statistics, vol. 2, no. 2, pp. 507–511, Aug. 2022, doi: 10.29313/bcss.v2i2.4776.
D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction To Time Series Analysis And Forecasting. Canada: John Wiley And Sons, Inc, 2015.
U. N. Fazrilillah and O. Rohaeni, “Penerapan Metode Holt’s Exponential Smoothing Dalam Memprediksi Jumlah Nasabah Kredit,” DataMath: Journal of Statistics and Mathematics, vol. 2, no. 1, pp. 11–16, 2024.
S. Pratiwi and M. Herlina, “Pengaruh Harga Pangan terhadap Inflasi dengan Metode Vector Autoregressive Integrated Moving Average,” Jurnal Riset Statistika, vol. 3, no. 2, pp. 87–96, Dec. 2023, doi: 10.29313/jrs.v3i2.2690.
P. Paridi, “Perbandingan Metode ARIMA (Box Jenkins), ARFIMA, Regresi Spektral dan SSA dalam Peramalan Jumlah Kasus Demam Berdarah Dengue di Rumah Sakit Hasan Sadikin Bandung,” JISIP (Jurnal Ilmu Sosial dan Pendidikan), vol. 3, no. 1, Mar. 2019, doi: 10.58258/jisip.v3i1.707.
J. R. M. Hosking, “Fractional differencing,” Biometrika, vol. 68, no. 1, pp. 165–176, 1981, doi: 10.1093/biomet/68.1.165.
G. Darmawan, “Pemodelan ARFIMA Nonstasioner Melalui Metode Modifikasi GPH (Geweke and Porter Hudak),” Pustaka Ilmiah Universitas Padjajaran.
P. Kartikasari, H. Yasin, and D. A. I. Maruddani, “Autoregressive Fractional Integrated Moving Average (ARFIMA) Model to Predict Covid-19 Pandemic Cases in Indonesia,” Media Statistika, vol. 14, no. 1, pp. 44–55, Jun. 2021, doi: 10.14710/medstat.14.1.44-55.
Haryadi, Ekonomi Internasional: Teori dan Aplikasi. Bogor: Biografika, 2013.
E. Christianto, “Faktor yang Mempengaruhi Volume Impor Beras di Indonesia ,” Jurnal JIBEKA, vol. 7, no. 2, pp. 38–43, Aug. 2013.
V. B. Kusnandar, “Defisit Perdagangan Migas Indonesia Makin Besar pada 2022,” databoks. Accessed: Jul. 18, 2024. [Online]. Available: https://databoks.katadata.co.id/datapublish/2023/02/06/defisit-perdagangan-migas-indonesia-makin-besar-pada-2022
W. W. S. Wei, Time Series Analysis: Univariate and Multivariate Methods, 2nd Edition. United States of America: Pearson Addison Wesley, 2006.