https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Determinasi Derajat Kelangsungan Hidup Anak Menggunakan Multigroup Structural Equation Modeling

Authors

  • Jasmine Wildani Arisa Statistika, Universitas Islam Bandung
  • Nusar Hajarisman Statisika Universitas Islam Bandung

DOI:

https://doi.org/10.29313/jrs.v3i2.3047

Keywords:

Pemodelan Persamaan Struktural Multigrup, Analisis Bertahap, Derajat Kelangsungan Hidup Anak

Abstract

Abstract. Basically, the main objective of this research is to apply the analysis technique of Multigroup Structural Equation Modeling (MSEM) to identify factors that affect the degree of child survival, where in this research Structural Equation Modeling will be developed in the case of heterogeneous data. This heterogeneous data cluster is divided into 2 groups, namely groups with high HDI areas and moderate HDI areas, where the groups are homogeneous. This research focuses on testing measurement invariance in heterogeneous data clusters. The data used comes from secondary data taken from the Social Health Office and BKKBN of West Java Province. The results of the application show that there are differences in indicators between high HDI groups and moderate HDI groups that make an important contribution to health facility factors and socio-economic factors. As for the results of invariance testing through stepwise analysis to determine the average similarity between health facility factors and socio-economic factors, it is concluded that the model has provided a good level of fit to the data.

Abstrak. Pada dasarnya tujuan utama penelitian ini adalah untuk menerapkan teknik analisis dari Multigroup Structural Equation Modeling (MSEM) untuk mengidentifikasi faktor-faktor yang berpengaruh terhadap derajat kelangsungan hidup anak, dimana pada penelitian ini akan dikembangkan pemodelan Structural Equation Modeling pada kasus data yang heterogen. Gugus data yang heterogen ini terbagi menjadi 2 kelompok, yaitu kelompok dengan wilayah IPM tinggi dan wilayah IPM sedang, dimana dalam kelompok tersebut bersifat homogen. Penelitian ini difokuskan pada pengujian invarians pengukuran (measurement invariance) pada gugus data yang heterogen. Data yang digunakan berasal dari data sekunder yang diambil dari Dinas Sosial Kesehatan dan BKKBN Provinsi Jawa Barat. Hasil penerapan menunjukan bahwa terdapat perbedaan indikator antara kelompok IPM tinggi dengan kelompok IPM sedang yang memberikan kontribusi penting pada faktor fasilitas kesehatan dan faktor sosial-ekonomi. Adapun pada hasil pengujian invarians melalui stepwise analysis untuk mengetahui kesamaan rata-rata antara faktor fasilitas Kesehatan dengan faktor sosial-ekonomi disimpulkan bahwa model telah memberikan tingkat kecocokan yang baik terhadap data.

References

Y. T. Prasetyo, T. Maulanti, S. F. Persada, A. A. N. Perwira Redi, M. N. Young, and J. F. T. Diaz, “Factors influencing job satisfaction among dentists during the new normal of the COVID-19 pandemic in Indonesia: A structural equation modeling approach,” Work, vol. 70, no. 2, pp. 365–376, 2021, doi: 10.3233/WOR-210479.

J. B. Ullman and P. M. Bentler, “Structural Equation Modeling,” in Chapter 23, I. B. Weiner, Ed., John Wiley & Son, 2013.

K. Jedidi, H. S. Jagpal, and W. S. DeSarbo, “Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity,” Marketing Science, vol. 16, no. 1, pp. 39–59, 1997, doi: 10.1287/mksc.16.1.39.

K. Yuan and P. M. Bentler, “A Unified Approach to Multi-group Structural Equation Modeling,” Advanced Structural Equation Modelling: New Developments and Techniques, 2000.

W. Widhiarso, “Berkenalan dengan Analisis Faktor Multi Grup (Multigroup CFA),” Fakultas Psikologi UGM, pp. 1–17, 2011.

S. Dinkes Kota, “Keadaan Derajat Kesehatan.” [Online]. Available: https://dinkes.serangkota.go.id/pages/keadaan-derajat-kesehatan

V. B. Kusnandar, “Angka Kematian Bayi Neonatal ASEAN, Indonesia Urutan Berapa?,” databoks. [Online]. Available: https://databoks.katadata.co.id/datapublish/2022/11/22/angka-kematian-bayi-neonatal-asean-indonesia-urutan-berapa

B. P. P. Nasional, Kajian evaluasi pembangunan sektoral: Faktor-Faktor yang mempengaruhi kelangsungan hidup anak. Jakarta: Bappenas, 2009.

H. Retnawati, “Analisis Jalur, Analisis Faktor Konfirmatori dan Pemodelan Persamaan Struktural,” Workshop Teknik Analisis Data, p. 19, 2017.

N. Hajarisman, “Konsep Dasar Tentang Pemodelan Persamaan Terstruktur,” Bandung.

Downloads

Published

2023-12-25