https://aboutmusicschools.com https://slotmgc.com https://300thcombatengineersinwwii.com https://mobilephonesource.co.uk https://discord-servers.io https://esmark.net https://slotmgc.com https://nikeshoesinc.us https://ellisislandimmigrants.org https://holidaysanthology.com https://southaventownecenter.net https://jimgodfreydesign.com https://mckinneypaintingpros.com https://enchantedmansion.org https://mckinneypaintingpros.com https://laurabrodieauthor.com https://holidaysanthology.com https://ardictionary.com https://113.30.151.116 https://103.252.118.20 https://206.189.83.174 https://157.230.39.109 https://128.199.85.208 https://172.104.51.149 https://174.138.21.250 https://157.245.50.183 https://152.42.239.189 https://188.166.210.125 https://152.42.178.155 https://192.53.172.202 https://172.104.188.91 https://103.252.118.157 https://63.250.61.107 https://165.22.104.74

Machine Learning pada Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Random Forest

Authors

  • Maurino Putra Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung
  • Erwin Harahap Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Islam Bandung

DOI:

https://doi.org/10.29313/jrm.v4i2.5102

Keywords:

Prediksi Kelulusan, Random Forest, Streamlit

Abstract

Abstrak. Kelulusan tepat waktu adalah indikator penting dalam menilai kualitas perguruan tinggi karena mencerminkan efektivitas proses pembelajaran dan mempengaruhi reputasi serta akreditasi institusi. Penelitian ini bertujuan memprediksi kelulusan mahasiswa menggunakan algoritma random forest yang diimplementasikan melalui aplikasi web berbasis Streamlit Python. Data diperoleh dari platform Kaggle dan diolah melalui proses pre-processing untuk memastikan kualitas data yang siap digunakan. Data tersebut kemudian dibagi menjadi data training dan testing untuk membangun model prediksi. Algoritma random forest dipilih karena merupakan sebuah metode ensemble atau gabungan dari banyak model CART (Classification and Regression Tree) sehingga dapat meningkatkan akurasi hasil prediksinya. Hasil penelitian menunjukkan model memiliki akurasi 88%, precision 81%, recall/sensitivity 97%, dan specificity 80% dalam memprediksi kelulusan mahasiswa. Faktor signifikan yang mempengaruhi kelulusan adalah status mahasiswa berdasarkan variable importance. Aplikasi web yang dikembangkan memudahkan prediksi status kelulusan mahasiswa, sehingga dapat digunakan sebagai alat bantu bagi institusi pendidikan dalam pengambilan keputusan terkait kelulusan mahasiswa.

Abstract. On-time graduation is a crucial indicator in assessing the quality of higher education institutions as it reflects the effectiveness of the learning process and impacts the institution's reputation and accreditation. This study aims to predict student graduation using the random forest algorithm, implemented through a web application based on Streamlit Python. The data was obtained from the Kaggle platform and processed through pre-processing to ensure the quality of the data was ready for use. The data was then split into training and testing data to build the predictive model. The random forest algorithm was chosen because it is an ensemble method, combining many CART (Classification and Regression Tree) models, which can improve prediction accuracy. The research results showed that the model has an accuracy of 88%, precision of 81%, recall/sensitivity of 97%, and specificity of 80% in predicting student graduation. The significant factor influencing graduation is the student's status based on variable importance. The developed web application facilitates the prediction of student graduation status, making it a useful tool for educational institutions in making decisions related to student graduation.

References

Mahmud Basuki, “Kontribusi Mahasiswa Dalam Akreditasi Program Studi,” NUSANTARA Jurnal Pengabdian Kepada Masyarakat, vol. 3, no. 2, pp. 48–54, Apr. 2023, doi: 10.55606/nusantara.v3i2.1038.

D. Handini, “Peralihan Akreditasi Program Studi dari BAN-PT kepada Lima Lembaga Akreditasi Mandiri (LAM) Baru,” https://dikti.kemdikbud.go.id/.

A. Azahari, Y. Yulindawati, D. Rosita, and S. Mallala, “Komparasi Data Mining Naive Bayes dan Neural Network memprediksi Masa Studi Mahasiswa S1,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 3, pp. 443–452, May 2020, doi: 10.25126/jtiik.2020732093.

M. Mubarok, M. Muliadi, and R. Herteno, “Hyper-parameter Tuning pada XGBOOST Untuk Prediksi Keberlangsungan Hidup Pasien Gagal Jantung,” Kumpulan Jurnal Ilmu Komputer, vol. 9, no. 2, 2022.

I. Mulyahati, “Implementasi Machine Learning Prediksi Harga Sewa Apartemen Menggunakan Algoritma Random Forest Melalui Framework Website Flask Python (Studi Kasus: Apartemen di DKI Jakarta Pada Website mamikos.com),” Universitas Islam Indonesia, Yogyakarta, 2020.

A. Suryadi, E. Harahap, and A. Rachmanto, “Rancang Bangun Sistem Informasi Persediaan Obat Berbasis Web DI Apotek XYZ,” Jurnal PETIK, vol. 4, no. 2, Sep. 2018.

Downloads

Published

2024-12-31