Deteksi Plat Nomor Kendaraan Menggunakan Algoritma YOLOv5 dengan Metode Convolutional Neural Network
DOI:
https://doi.org/10.29313/jrm.v4i2.5060Keywords:
YOLOv5, Convolutional Neural Network, Deteksi Plat NomorAbstract
Abstrak. Sistem pengawasan lalu lintas yang efektif sangat dibutuhkan untuk mengelola arus lalu lintas yang semakin kompleks di kota-kota besar. Pemantauan plat nomor kendaraan menggunakan teknologi pengenalan objek berbasis machine learning dapat membantu penegakan hukum lalu lintas secara efisien. Penelitian ini mengimplementasikan algoritma YOLOv5 yang dikenal dengan kecepatan dan akurasinya dalam mendeteksi objek secara real-time, dikombinasikan dengan metode Convolutional Neural Network (CNN) untuk mendeteksi plat nomor kendaraan. CNN digunakan untuk mengekstraksi fitur-fitur penting dari gambar, yang digunakan oleh YOLOv5 untuk mendeteksi dan menentukan lokasi plat nomor kendaraan secara akurat. Penelitian ini bertujuan untuk mengembangkan sistem deteksi plat nomor kendaraan dengan menguji tingkat akurasi dari model yang dibuat, serta melakukan pembacaan karakter menggunakan Optical Character Recognition (OCR) berbasis easyOCR. Hasil penelitian menunjukkan bahwa kombinasi algoritma YOLOv5 dan CNN mampu mendeteksi plat nomor dengan akurasi yang tinggi, serta pembacaan karakter yang juga akurat, dimana sistem ini diujicobakan pada berbagai kondisi gambar kendaraan yang bergerak dan diam. Implementasi YOLOv5 terbukti efisien dalam memproses gambar, menjadikannya solusi yang handal untuk sistem pengawasan lalu lintas.
Abstract. An effective traffic surveillance system is needed to manage the increasingly complex traffic flow in big cities. Vehicle license plate monitoring using machine learning-based object recognition technology can help traffic law enforcement efficiently. This research implements the YOLOv5 algorithm which is known for its speed and accuracy in detecting objects in real-time, combined with the Convolutional Neural Network (CNN) method to detect vehicle license plates. CNN is used to extract important features from the image, which are used by YOLOv5 to detect and accurately determine the location of the vehicle license plate. This research aims to develop a vehicle license plate detection system by testing the accuracy of the model created, as well as reading characters using Optical Character Recognition (OCR) based on easyOCR. The results showed that the combination of the YOLOv5 algorithm and CNN was able to detect license plates with high accuracy, as well as accurate character reading, where this system was tested on various conditions of moving and stationary vehicle images. The YOLOv5 implementation proved to be efficient in processing images, making it a reliable solution for traffic surveillance systems.
References
M. Zulfikri, K. A. Latif, H. Hairani, A. Ahmad, R. Hammad, and M. Syahrir, “Deteksi dan Estimasi Kecepatan Kendaraan dalam Sistem Pengawasan Lalu Lintas Menggunakan Pengolahan Citra,” Techno. Com, vol. 20, no. 3, pp. 455–467, 2021.
E. Harahap, D. Darmawan, and F. H. Badruzzaman, “Simulation of Traffic T-Junction at Cibiru-Cileunyi Lane Using SimEvents MATLAB,” J Phys Conf Ser, vol. 1613, no. 1, p. 012074, 2020, doi: 10.1088/1742-6596/1613/1/012074.
E. Harahap, F. H. Badruzzaman, Y. Permanasari, M. Y. Fajar, and A. Kudus, “Traffic engineering simulation of campus area transportation using MATLAB SimEvents,” IOP Conf Ser Mater Sci Eng, vol. 830, no. 2, p. 022078, 2020, doi: 10.1088/1757-899X/830/2/022078.
R. Shreyas, B. V. P. Kumar, H. B. Adithya, B. Padmaja, and M. P. Sunil, “Dynamic traffic rule violation monitoring system using automatic number plate recognition with SMS feedback,” in 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), IEEE, Aug. 2017, pp. 1–5. doi: 10.1109/TEL-NET.2017.8343528.
O. Mellolo, “Pengenalan Plat Nomor Polisi Kendaraan Bermotor,” Jurnal ilmiah sains, pp. 35–42, 2012.
K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biol Cybern, vol. 36, no. 4, pp. 193–202, 1980.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
R. S. Bahri, “Perbandingan algoritma template matching dan feature extraction pada optical character recognition,” KOMPUTA: Jurnal Komputer dan Informatika, vol. 1, no. 1, 2012.
M. F. Haidar and F. Utaminingrum, “Deteksi Plat Nama Ruangan untuk Kendali Kursi Roda Pintar menggunakan YOLOv5 dan EasyOCR berbasis TX2,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 2, pp. 658–662, 2023.
S. Zein and G. Gunawan, “Prediksi Hasil FIFA World Cup Qatar 2022 Menggunakan Machine Learning dengan Python,” J. Ris. Mat., pp. 153–162, Dec. 2022, doi: 10.29313/jrm.v2i2.1382.
D. Pitriyani and Y. Permanasari, “Prediksi Jumlah Penumpang Pesawat dengan Backpropagation Neural Network,” J. Ris. Mat., pp. 129–136, Dec. 2022, doi: 10.29313/jrm.v2i2.1327.
T. Barokah and E. Harahap, “Peramalan Beban Jangka Panjang Sistem Kelistrikan Kota Bandung Menggunakan Artificial Neural Network,” J. Ris. Mat., vol. 4, no. 1, pp. 65–72, Jun. 2024, doi: 10.29313/jrm.v4i1.3603.
G. Achyar and O. Rohaeni, “Penggunaan Hybrid K-Means dan General Regression Neural Network untuk Prediksi Harga Saham Indeks LQ45,” J. Ris. Mat., pp. 111–120, Dec. 2022, doi: 10.29313/jrm.v2i2.1193.
A. Khaerunnisa, “Analisis Tingkat Kelulusan Mahasiswa di Unisba dengan menggunakan Algoritma K-Means Clustering,” J. Ris. Mat., pp. 67–76, Jul. 2022, doi: 10.29313/jrm.v2i1.1018.
S. A. Savitri and D. Suhaedi, “Penerapan Inference Fuzzy Mamdani dalam Seleksi Penerima Bantuan Sosial Tunai Kabupaten Belitung Timur,” J. Ris. Mat., pp. 163–172, Dec. 2022, doi: 10.29313/jrm.v2i2.1383.
S. T. Utami Putri and E. Kurniati, “Prediksi Harga Saham Menggunakan Jump Diffusion Model dan Analisis Value at Risk,” J. Ris. Mat., pp. 131–140, Dec. 2023, doi: 10.29313/jrm.v3i2.2832.
I. Putri Fatimah and D. Suhaedi, “Sistem Pendukung Keputusan Pemilihan Tingkat Prestasi Siswa Menggunakan Metode PROMETHEE,” J. Ris. Mat., pp. 141–148, Dec. 2023, doi: 10.29313/jrm.v3i2.2833.
S. Sofiyani and Y. Permanasari, “Penerapan Metode Cubic Spline Interpolation untuk Menentukan Peluang Kematian pada Tabel Mortalita,” J. Ris. Mat., pp. 29–36, Jul. 2023, doi: 10.29313/jrm.v3i1.1735.
W. Ismarnita and Respitawulan, “Penerapan Logika Fuzzy dalam Menentukan Tingkat Kerawanan Longsor di Suatu Wilayah,” J. Ris. Mat., pp. 45–54, Jul. 2023, doi: 10.29313/jrm.v3i1.1737.
N. N. Layla, E. Kurniati, and D. Suhaedi, “Peramalan Indeks Harga Saham dengan Autoregressive Moving Average Generelized Autoregressive Conditional Heteroscedasticity (ARMA-GARCH),” J. Ris. Mat., vol. 1, no. 1, pp. 7–12, 2021, doi: 10.29313/jrm.v1i1.103.